plot.predict.dfrr {dfrr} | R Documentation |
Plot dfrr predictions
Description
Plot a predict.dfrr
object.
Usage
## S3 method for class 'predict.dfrr'
plot(
x,
id = NULL,
main = id,
col = "blue",
lwd = 2,
lty = "solid",
cex.circle = 1,
col.circle = "black",
ylim = NULL,
...
)
Arguments
x |
a |
id |
a vector of length one or more containing subject ids to plot. Must be matched with
|
main |
a vector of length one or |
col , lwd , lty , ... |
graphical parameters passed to |
cex.circle , col.circle |
size and color of circles and filled circles. |
ylim |
a vector of length two indicating the range of y-axis of the plot. |
Details
The output is the plot of predictions of latent functions given the new covariates.
For the case in which newydata
is also given, the predictions are plotted
over the observed binary sequence.
The binary sequence is illustrated with circles and filled circles for the values
of zero and one, respectively.
Value
This function generates the plot of predictions.
References
Choi, H., & Reimherr, M. A geometric approach to confidence regions and bands for functional parameters . Journal of the Royal Statistical Society, Series B Statistical methodology 2018; 80:239-260.
Examples
set.seed(2000)
N<-50;M<-24
X<-rnorm(N,mean=0)
time<-seq(0,1,length.out=M)
Y<-simulate_simple_dfrr(beta0=function(t){cos(pi*t+pi)},
beta1=function(t){2*t},
X=X,time=time)
#The argument T_E indicates the number of EM algorithm.
#T_E is set to 1 for the demonstration purpose only.
#Remove this argument for the purpose of converging the EM algorithm.
dfrr_fit<-dfrr(Y~X,yind=time,T_E=1)
newdata<-data.frame(X=c(1,0))
preds<-predict(dfrr_fit,newdata=newdata)
plot(preds)
newdata<-data.frame(X=c(1,0))
newydata<-data.frame(.obs=rep(1,5),.index=c(0.0,0.1,0.2,0.3,0.7),.value=c(1,1,1,0,0))
preds<-predict(dfrr_fit,newdata=newdata,newydata = newydata)
plot(preds)