waic {dfped} | R Documentation |
Function for the Watanabe-Akaike information criteria (WAIC)
Description
Model selection can be performed for each working model (WM) using the Watanabe-Akaike information criteria (WAIC) developed by Watanabe.
Usage
waic(stanfit, s)
Arguments
stanfit |
Estimates obtained with the STAN fit. You can use the |
s |
Integer specifying the number of models used to compute the WAIC selection. |
Author(s)
Artemis Toumazi artemis.toumazi@gmail.com, Caroline Petit caroline.petit@crc.jussieu.fr, Sarah Zohar sarah.zohar@inserm.fr
References
Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.
Watanabe S. Asymptotic Equivalence of Bayes cross vallidation and widely applicable information criterion in singular learning theory, volume 11. 2010.
Examples
## Not run:
for(s in 1:nbDesign){
fitj <- fitDataj(stan_model, nbPatientsj, nbDoses, tox, eff, given_dose,
skeleton_tox, skeleton_eff, mu, sigma, s)
waicj <- waic(stanfit=fitj, s)
}
## End(Not run)