skeleton {dfped} | R Documentation |
Build a working model.
Description
The construction of the working model's skeleton.
Usage
skeleton(doseChildren, doseAdult, dataTox, dataAuc = NULL, Clad,
Clch, nbSimu, graph = TRUE)
Arguments
doseChildren |
The paediatric dose level. |
doseAdult |
The adult dose level. |
dataTox |
The database of the toxicities. |
dataAuc |
The database of the AUC; defaults to NULL. |
Clad |
The clearance of the adults. |
Clch |
Paediatric clearance (known or estimated). An estimate can be computed using maturation adjustment (MA), allometric adjustment (AA) or linear adjustment (LA) for a specific group of age. |
nbSimu |
The number of simulation using in meta analysis function |
graph |
A choice to plot the estimates using the function |
Author(s)
Artemis Toumazi artemis.toumazi@gmail.com, Caroline Petit caroline.petit@crc.jussieu.fr, Sarah Zohar sarah.zohar@inserm.fr
References
Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.
See Also
Examples
## Not run:
########
# Note: For this example we are using a paediatric database that we have including data of
# children from 0 to 19 years old.
########
children <- read.csv("/Users/artemistoumazi/paediatric_data_p3m/children_0_19.csv")
AGE <- children$Age
W <- children$Weight
W_ad <- 70
Cl_ad <- 3.95
F_ad <- 0.6
Eg <- 0
Eh <- 0.058
f_abs <- F_ad/((1 - Eh)*(1-Eg))
fu_ad <- 1
perc_CYPh <- data.frame("CYP3A4_5" = 0.7, "CYP1A2" = 0.3)
perc_CYPg <- data.frame("CYP3A4_5" = 1)
perc_alb <- 1
perc_alpha1AG <- 0
data_molecule <- list(F_ad, f_abs, Eg, Eh, fu_ad, perc_CYPg, perc_CYPh,
perc_alb, perc_alpha1AG)
Clch_mat <- Clch.Mat(AGE, W, Cl_ad, W_ad, data_molecule)
####################################
########## WORKING MODEL ###########
####################################
children <- data.frame(children, Clch_mat)
########## Children from 2 to 5 years old
children2_5 <- children[children$Age >= 2 & children$Age <= 5 ,]
Cl_ch <- mean(children2_5$Clch_mat)
# Doses for paediatric using maturation adjustment
dCh_mat_2_5 <- c(30, 45, 55, 70, 85)
Cl_ad <- 3.95
AUCThomas <- c(20,40, 60)
probaToxThomas <- c(0.1,0.25, 0.55)
################# Non-parametric PAVA estimate ###################
# data from the publications of toxicity in the erlotinib
pardos_2006 <- rbind(c(100,0/3, 3), c(150, 1/3,3), c(200, 0/3, 3), c(250, 3/6, 6))
thepot_2014 <- rbind(c(100, 0/5, 5), c(150,3/25, 25))
calvo_2007 <- rbind(c(150, 1/25, 25))
raizer_2010 <- rbind(c(150,11/99, 99))
vanDenBent_2009 <- rbind( c(200, 6/54, 54))
sheikh_2012 <- rbind(c(150, 0.544, 307))
rocheNTC00531934 <- rbind(c(150, 0.186, 59))
dataTox <- rbind(pardos_2006, thepot_2014, calvo_2007, raizer_2010, vanDenBent_2009,
rocheNTC00531934, sheikh_2012)
dataTox <- data.frame(dataTox)
colnames(dataTox) <- c("doses", "proba", "nbPatients")
nbTox <- dataTox$proba*dataTox$nbPatients
dataTox <- data.frame(dataTox, nbTox)
data_auc <- data.frame(AUCThomas, probaToxThomas )
dose_children <- dCh_mat_2_5[1:4]
dose_adult <- c(100,150,200, 250)
graph <- TRUE
skeleton(dose_children, dose_adult, dataTox, data_auc, Cl_ad, Cl_ch, nbSimu = 10,
graph = TRUE)
## End(Not run)