sigmaHI {dfped} | R Documentation |
Compute the informative prior variance for the adaptive prior.
Description
Compute the informative prior variance for the adaptive prior based on the assumption that every dose has the same probability to be the maximum tolerated dose (MTD), i.e. uniform distribution.
Usage
sigmaHI(wm, meanbeta, a = NULL, model, tau, threshold)
Arguments
wm |
The selected working model; for example the skeleton of toxicity; must be a vector. |
meanbeta |
The mean value of variable beta. |
a |
The variable a; the default value is NULL. |
model |
A valid model; for example "power_log" model. |
tau |
The target of toxicity. |
threshold |
A threshold of the model. |
Author(s)
Artemis Toumazi artemis.toumazi@gmail.com, Caroline Petit caroline.petit@crc.jussieu.fr, Sarah Zohar sarah.zohar@inserm.fr
References
Petit, C., et al, (2016) Unified approach for extrapolation and bridging of adult information in early phase dose-finding paediatric studies, Statistical Methods in Medical Research, <doi:10.1177/0962280216671348>.
Zhang J., Braun T., and J. Taylor. Adaptive prior variance calibration in the bayesian continual reassessment method. Stat. Med., 32:2221-34, 2013.
See Also
Examples
targetTox <- 0.25 # target of toxicity
####### Skeleton ###########
skeleton_tox1 <- c(0.10, 0.21, 0.33, 0.55, 0.76)
skeleton_tox2 <- c(0.21, 0.33, 0.55, 0.76, 0.88)
skeleton_tox3 <- c(0.05, 0.10, 0.21, 0.33, 0.55)
skeleton_tox4 <- c(0.025, 0.05, 0.1, 0.21, 0.33)
skeleton_tox5 <- c(0.0125, 0.025, 0.05, 0.1, 0.21)
skeletonTox <- data.frame(skeleton_tox1, skeleton_tox2, skeleton_tox3,
skeleton_tox4, skeleton_tox5)
mu <- -0.34
sigmaHI <- sigmaHI(skeletonTox[ ,1], mu, a = NULL, "power_log", targetTox, 0.80)