glimem {dfmeta} | R Documentation |
The logistic regression mixed effect model.
Description
This function corresponds to the generalized logistic regression mixed effect model. This model is a model-based method for combining toxicities across the trials and cycles. We model:
log(\frac{R_{ij}(x)}{1 - R_{ij}(x)}) = \mu_{ij}(x) + Z_i,
where Z_{i}
's are assumed to be i.i.d \mathcal{N}(0, \sigma^{2}(x))
. Notice that \mu_{i1}(x), \mu_{i2}(x),..., \mu_{iP}(x) = \bar{\mu}_i
represents the mean toxicities on the logit scale across the cycles.
Usage
glimem(simData, sim0, sim1, family = binomial, link = "logit", nAGQ,
control = glmerControl(optimizer = "bobyqa"))
Arguments
simData |
a data frame containing the variables named in the formula (i.e. a toxicity data for each patient at each simulation and trial. |
sim0 |
the simulation starting point; defaults to the minimum number of the simulation in the given data frame. |
sim1 |
the simulation ending point; defaults to the maximum number of the simulation in the given data frame. |
family |
a distribution family for the response variable; defaults to binomial distribution. See |
link |
a specification for the model link function. This can be a name/expression, a literal character string or a length-one character vector; defaults to logit link function. See |
nAGQ |
an integer scalar - the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood; defaults to 1, corresponding to the Laplace approximation. Values greater than 1 produce greater accuracy in the evaluation of the log-likelihood at the expense of speed. |
control |
a list (of correct class, resulting from |
Value
A list is returned, consisting of the generalized logistic regression mixed effect model's results. The output generated by this function contains the following components:
m |
a summary of the generalized logistic regression model. |
coeff |
the random and the fixed effects coefficients for each explanatory variable for each level of each grouping factor. |
simData |
a data frame including the predicted values and the residuals for the selected simulation. |
Author(s)
Artemis Toumazi <artemis.toumazi@gmail.com>, Sarah Zohar <sarah.zohar@inserm.fr>, Anand N. Vidyashankar <avidyash@gmu.edu>, Jie Xu <jxu13@gmu.edu> and Moreno Ursino <moreno.ursino@inserm.fr>
See Also
Examples
## Not run:
################################################################
### Give a toxicity data for each simulation and each trial. ###
################################################################
### Using a toxicity data for each simulation and each trial including in the dfmeta package.
data("Toxdata")
dim(Toxdata)
colnames(Toxdata)
## NOTE: The toxicity dataset must have the same structure as below. ##
## Check it before running the VarWT function! ##
str(Toxdata)
analyf0 <- Toxdata[order(Toxdata$simulation), ]
## Using the random effect analysis's function including in the dfmeta package ##
simData <- doseRecords(analyf0)
NewData <- simData$doseRecords
########################################################################################
## In the following example the function glimem is using to find the predicted random ##
###################### effect center mu only for the simulation 10 #####################
########################################################################################
mod <- glimem(NewData, 10, 10, family = binomial, link = "logit", nAGQ = 1,
control = glmerControl(optimizer = "bobyqa"))
mod
## End(Not run)