det.construct {detpack} | R Documentation |
Distribution Element Tree (DET) Construction
Description
The function det.construct
generates a distribution element tree DET from available data. The DET can be used firstly in connection with det.query
for density estimation. Secondly, with det.rnd
, DETs can be used for smooth bootstrapping or more specifically conditional or unconditional random number generation.
Usage
det.construct(dta, mode = 2, lb = NA, ub = NA, alphag = 0.001,
alphad = 0.001, progress = TRUE, dtalim = Inf, cores = 1)
Arguments
dta |
matrix with |
mode |
order of distribution elements applied, default is |
lb , ub |
vectors of length |
alphag , alphad |
significance levels for goodness-of-fit and independence tests, respectively, in element refinement or splitting process. Default is |
progress |
optional logical, if set to |
dtalim |
for large datasets, |
cores |
|
Value
A DET object, which reflects the tree and pre-white transform, is returned.
References
Meyer, D.W. (2016) http://arxiv.org/abs/1610.00345 or Meyer, D.W., Statistics and Computing (2017) https://doi.org/10.1007/s11222-017-9751-9 and Meyer, D.W. (2017) http://arxiv.org/abs/1711.04632
Examples
## Gaussian mixture data
require(stats)
det <- det.construct(t(c(rnorm(1e5),rnorm(1e4)/100+2))) # default linear det (mode = 2)
x <- t(seq(-4,6,0.01)); p <- det.query(det, x); plot(x, p, type = "l")
## piecewise uniform data with peaks
x <- matrix(c(rep(0,1e3),rep(1,1e3), 2*runif(1e4),
rep(0,5e2),rep(1,25e2),2*runif(9e3)), nrow = 2, byrow = TRUE)
det <- det.construct(x, mode = 1, lb = 0, ub = 0) # constant elements, no pre-whitening