| datocc {detect} | R Documentation |
Simulated example for occupancy model
Description
Simulated example for occupancy model, see code below.
Usage
data(datocc)
Format
A data frame with 1000 observations on the following 6 variables.
Ytrue occupancy
Wobservations
x1random variables used as covariates
x2random variables used as covariates
x3random variables used as covariates
x4random variables used as covariates
p.occprobability of occurrence
p.detprobability of detection
Details
This simulated example corresponds to the ZI Binomial model implemented in the function svocc.
Source
Simulated example.
References
Lele, S.R., Moreno, M. and Bayne, E. (2011) Dealing with detection error in site occupancy surveys: What can we do with a single survey? Journal of Plant Ecology, 5(1), 22–31. <doi:10.1093/jpe/rtr042>
Examples
data(datocc)
str(datocc)
## Not run:
## simulation
n <- 1000
set.seed(1234)
x1 <- runif(n, -1, 1)
x2 <- as.factor(rbinom(n, 1, 0.5))
x3 <- rnorm(n)
x4 <- rnorm(n)
beta <- c(0.6, 0.5)
theta <- c(0.4, -0.5, 0.3)
X <- model.matrix(~ x1)
Z <- model.matrix(~ x1 + x3)
mu <- drop(X %*% beta)
nu <- drop(Z %*% theta)
p.occ <- binomial("cloglog")$linkinv(mu)
p.det <- binomial("logit")$linkinv(nu)
Y <- rbinom(n, 1, p.occ)
W <- rbinom(n, 1, Y * p.det)
datocc <- data.frame(Y, W, x1, x2, x3, x4, p.occ, p.det)
## End(Not run)
[Package detect version 0.4-6 Index]