ols.predict {desk}R Documentation

Predictions in a Linear Model

Description

Calculates the predicted values of a linear model based on specified values of the exogenous variables. Optionally the estimated variance of the prediction error is returned.

Usage

ols.predict(mod, data = list(), xnew, antilog = FALSE, details = FALSE)

Arguments

mod

model object generated by ols() or lm().

data

name of data frame to be specified if mod is a formula.

xnew

(T x K) matrix of new values of the exogenous variables, for which a prediction should be made, where K is the number of exogenous variables in the model T is the number of predictions to be made. If xnew is not specified, the fitted values are returned.

antilog

logical value which indicates whether to re-transform the predicted value of a log transformed dependent variable back into original units.

details

logical value, if specified as TRUE, a list is returned, which additionally includes the estimated variance of the prediction error (var.pe), estimated variance of the error term (sig.squ), and the estimated sampling error (smpl.err).

Value

A list object including:

pred.val the predicted values.
xnew values of predictor at which predictions should be evaluated.
var.pe estimated variance of prediction error.
sig.squ estimated variance of error term.
smpl.err estimated sampling error.
mod the model estimated (for internal purposes)

Examples

## Estimate logarithmic model
fert.est <- ols(barley ~ phos + nit, data = log(data.fertilizer))

## Set new x data
my.mat = cbind(x1 = log(c(6,3,9)), x2 = log(c(5,3,10)))

## Returns fitted values
ols.predict(fert.est)

## Returns predicted values at new x-values
ols.predict(fert.est, xnew = my.mat)

## Returns re-transformed predicted values and est. var. of pred. error
ols.predict(fert.est, xnew = my.mat, antilog = TRUE, details = TRUE)


[Package desk version 1.1.1 Index]