ar1sim {desk} | R Documentation |
Simulate AR(1) Process
Description
Simulates an autoregressive process of order 1.
Usage
ar1sim(n = 50, rho, u0 = 0, var.e = 1, details = FALSE, seed = NULL)
Arguments
n |
total number of observations to be generated (one predetermined start value u0 and n-1 random values) |
rho |
true rho value of the AR(1) process to be simulated. |
u0 |
start value of the process in t = 0. |
var.e |
variance of the random error. If zero, no random error is added. |
details |
logical value indicating whether details should be printed. |
seed |
optionally set a custom random seed for reproducing results. |
Value
A list object including:
u.sim | vector of simulated AR(1) values. |
n | total number of simulated AR(1) values. |
rho | true rho value of AR(1) process. |
e.sim | normal errors in AR(1) process. |
Note
Objects generated by ar1sim()
can be plotted using the regular plot()
command.
plot.what = "time"
plots simulated AR(1) values over time. Available options are
... | other arguments that plot() understands. |
plot.what = "lag"
plots simulated AR(1) values over its lagged values. Available options are
true.line | logical value (default: TRUE). Should the true line be plotted? |
acc.line | logical value (default: FALSE). Should the autocorrelation coefficient line be plotted? |
ols.line | logical value (default: FALSE). Should the ols regression line be plotted? |
... | other arguments that plot() understands. |
Examples
## Generate 30 positively autocorrelated errors
my.ar1 <- ar1sim(n = 30, rho = 0.9, var.e = 0.1, seed = 511)
my.ar1
plot(my.ar1$u.sim, type = 'l')
## Illustrate the effect of Rho on the AR(1)
set.seed(12)
parOrg = par(c("mfrow", "mar"))
par(mfrow = c(2,4), mar = c(1,1,1,1))
rhovalues <- c(0.1, 0.5, 0.8, 0.99)
for (i in c(0, 0.3)){
for (rho in rhovalues){
u.data <- ar1sim(n = 20, u0 = 2, rho = rho, var.e = i)
plot(u.data$u.sim, plot.what = "lag", cex.legend = 0.7, xlim = c(-2.5,2.5), ylim = c(-2.5,2.5),
acc.line = TRUE, ols.line = TRUE)
}
}
par(mfrow = parOrg$"mfrow", mar = parOrg$"mar")
## Illustrate the effect of Rho on the (non-)stationarity of the AR(1)
set.seed(1324)
parOrg = par(c("mfrow", "mar"))
par(mfrow = c(2, 4), mar = c(1,1,1,1))
for (rho in c(0.1, 0.9, 1, 1.04, -0.1, -0.9, -1, -1.04)){
u.data <- ar1sim(n = 25, u0 = 5, rho = rho, var.e = 0)
plot(u.data$u.sim, plot.what = "time", ylim = c(-8,8))
}
par(mfrow = parOrg$"mfrow", mar = parOrg$"mar")
[Package desk version 1.1.1 Index]