bivariate {descstat} | R Documentation |
Functions to compute statistics on bivariate distributions
Description
These functions are intended to compute from a cont_table
objects
covariation statistics, ie the covariance, the correlation
coefficient, variance decomposition and regression line.
Usage
covariance(data, ...)
correlation(data, ...)
## S3 method for class 'cont_table'
covariance(data, ...)
## S3 method for class 'cont_table'
correlation(data, ...)
## S3 method for class 'cont_table'
anova(object, x, ...)
## S3 method for class 'anova.cont_table'
summary(object, ...)
regline(formula, data)
Arguments
data , object |
a |
... |
further arguments. |
x |
the series for which the analyse of variance should be computed, |
formula |
symbolic description of the model, |
Value
a numeric or a tibble
Author(s)
Yves Croissant
Examples
# the covariance and the linear correlation coefficient are
# computed using only the `cont_table`
# First reduce the number of bins
wages2 <- wages %>%
dplyr::mutate(size = cut(as_bin(size), c(20, 50, 100)),
wage = cut(as_bin(wage), c(10, 30, 50)))
wages2 %>% cont_table(wage, size) %>% covariance
wages2 %>% cont_table(wage, size) %>% correlation
# For the analyse of variance, one of the two series should be
# indicated
wages2 %>% cont_table(wage, size) %>% anova(wage)
wages2 %>% cont_table(wage, size) %>% anova(wage) %>% summary
# For the regression line, a formula should be provided
wages2 %>% cont_table(wage, size) %>% regline(formula = wage ~ size)
[Package descstat version 0.1-2 Index]