centralPlot {depthTools} | R Documentation |
Plot of the central curves
Description
centralPlot
plots distinctly the [np] most central observations, where [np] is the largest integer smaller than np, and the remaining most external ones, according to the modified band depth.
Usage
centralPlot(x, p=0.5,col.c='red',col.e='slategray',lty=c(1,3),gradient=FALSE,
gradient.ramp=NULL,main=NULL,cex=1,...)
Arguments
x |
a data matrix containing the observations (samples) by rows and the variables (genes) by columns. |
p |
proportion of most central samples to be displayed. |
col.c |
the color for the central samples, either as a character string or as a number. Ignored if gradient is TRUE. |
col.e |
the color for the external samples. |
lty |
a vector of two components with the line type of the central and external curves. |
gradient |
a logical value. If TRUE then the most central curves are plotted with colors according to the gradient.ramp parameter. |
gradient.ramp |
an optional vector of two components containing the first and last colors of the palette used to color the most central curves. |
main |
a character string for the plot title. |
cex |
the magnification to be used for the legend. |
... |
further graphical parameters to be passed to 'plot'. |
Details
The centralPlot
allows to visualise the most central curves within the dataset.
Author(s)
Sara Lopez-Pintado sl2929@columbia.edu and Aurora Torrente etorrent@est-econ.uc3m.es
References
Lopez-Pintado, S. et al. (2010). Robust depth-based tools for the analysis of gene expression data. Biostatistics, 11 (2), 254-264.
Examples
## simulated data
set.seed(0)
x <- matrix(rnorm(100),10,10)
centralPlot(x,p=0.2)
## real data
data(prostate)
prost.x<-prostate[,1:100]
prost.y<-prostate[,101]
centralPlot(prost.x[prost.y==0,], p=0.5) ## 50 % most central normal samples
centralPlot(prost.x[prost.y==1,], p=0.5, gradient=TRUE, main='Tumor samples')
## 50 % most central tumoral samples