dependAFT.reg {depend.truncation} | R Documentation |
Semiparametric Inference for the AFT regression Model with Dependent Truncation
Description
Regression estimation for the AFT regression model based on left-truncated and right-censored data (Emura & Wang 2016). The dependency of truncation on lifetime is modeled through the AFT regression form.
Usage
dependAFT.reg(t.trunc, y.trunc, d, x1.trunc, initial = c(0, 0), LY = FALSE,
beta1_low = -0.2, beta1_up = 0.2, alpha = 1, epsilon = 1/50)
Arguments
t.trunc |
vector of left-truncation variables satisfying t.trunc<=y.trunc |
y.trunc |
vector of lifetime variables satisfying t.trunc<=y.trunc |
d |
vector of censoring indicators |
x1.trunc |
vector of 1-dimensional covariates |
initial |
a pair of initial values for (beta, gamma) |
LY |
Lai and Ying's estimator for initial values |
beta1_low |
lower bound for beta |
beta1_up |
upper bound for beta |
alpha |
some tuning parameter for optimization, alpha=1 is default |
epsilon |
some tuning parameter for kernel methods |
Details
Only the univariate regression (only one covariate) is allowed.
Value
beta |
inference results for beta |
gamma |
inference results for gamma |
beta_LY |
the estimator of Lai & Ying (1991) |
S2_Minimum |
minimum of the objective function |
detail |
detailed results for minimizing the estimating objective function "optim" |
Author(s)
Takeshi Emura
References
Emura T, Wang W (2016), Semiparametric Inference for an Accelerated Failure Time Model with Dependent Truncation, Ann Inst Stat Math 68 (5): 1073-94.
Lai TL, Ying Z (1991), Rank Regression Methods for Left-Truncated and Right-Censored Data. Annals of Statistics 19: 531-556.
Examples
y.trunc=c(
-0.52, 0.22, -1.42, 0.05, 0.32, -1.02, -0.47, 0.10, -0.38, -0.18, 0.97, 0.04, -0.10,
0.50, 0.57, -0.80, -0.24, 0.07, -0.04, 0.88, -0.52, -0.28, -0.55, 0.53, 0.99, -0.52,
-0.59, -0.48, -0.07, 0.20, -0.34, 1.00, -0.52)
t.trunc=c(
-2.05, -0.25, -2.43, -0.32, -0.27, -1.06, -0.95, -0.82, -0.66, -0.28, -1.14, -0.32, -1.19,
-2.18, -0.45, -1.71, -0.84, -1.93, -1.04, -2.58, -1.97, -2.15, -0.59, -0.74, -1.26, -2.57,
-2.40, -2.22, -1.52, -0.21, -1.50, -1.99, -1.79)
d=c(1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
0, 1, 1,1)
x1.trunc=c(
0.27, 0.66, 0.77, 0.21, 0.48, 0.11, 0.69, 0.32, 0.33, 0.43, 0.12, 0.60, 0.13, 0.43, 0.99,
0.21, 0.93, 0.60, 0.45, 0.41, 0.86, 0.90, 0.76, 0.93, 0.27, 0.13, 0.82, 0.17, 0.63, 0.31,
0.13, 0.48, 0.32)
### Data analysis in Emura & Wang (2016) ###
# dependAFT.reg(t.trunc,y.trunc,d,x1.trunc,alpha=2,LY=TRUE,beta1_low=-5,beta1_up=5)
dependAFT.reg(t.trunc,y.trunc,d,x1.trunc,LY=FALSE,beta1_low=-5,beta1_up=5)
#### Channing hourse data analysis; Section 5 of Emura & Wang (2016) #####
# library(KMsurv)
# data(channing)
# y.trunc=log(channing$age)
# t.trunc=log(channing$ageentry)
# d=channing$death
# x1.trunc=as.numeric(channing$gender==1)
# dependAFT.reg(t.trunc,y.trunc,d,x1.trunc,beta1_low=-0.2,beta1_up=0.2)
# dependAFT.reg(t.trunc,y.trunc,d,x1.trunc,LY=TRUE,alpha=2,beta1_low=-0.2,beta1_up=0.2)