zetaci {depcoeff} | R Documentation |
Zeta coefficient of piecewise monotonicity with split domain
Description
The function zetaci evaluates the coefficient of piecewise monotonicity of variables x and y where the x-domain is split into a fixed number of intervals.
Usage
zetaci(x,y,a,method="Spearman",methodF=1,parH=0.5,parp=1.5)
Arguments
x , y |
data vectors of the two variables whose dependence is analysed. |
a |
vector of fractions |
method |
value (default "Spearman") |
methodF |
value 1,2 or 3 refers to several methods for computation of the distribution function values, 1 is the default value. |
parH |
parameter of the Huber function (default 0.5). Valid values for parH are between 0 and 1. |
parp |
parameter of the power function (default 1.5). The parameter has to be positive. |
Details
Let X_{1},\ldots ,X_{n}
be the sample of the X
variable. Formulas
for the estimators of values F(X_{i})
of the distribution function:
methodF = 1 \rightarrow \hat{F}(X_{i})=\frac{1}{n}\textrm{rank}(X_{i})
methodF = 2 \rightarrow \hat{F}^{1}(X_{i})=\frac{1}{n+1}\textrm{rank}(X_{i})
methodF = 3 \rightarrow \hat{F}^{2}(X_{i})=\frac{1}{\sqrt{n^{2}-1}}\textrm{rank}(X_{i})
The values of the distribution function of Y
are treated analogously.
Value
list of zeta dependence coefficients of piecewise monotonicity of two random variables containing the following elements: Spearman...Spearman coefficient footrule...Spearman's footrule power...power coefficient Huber...Huber function coefficient
References
Eckhard Liebscher (2017). Copula-based dependence measures for piecewise monotonicity. Dependence Modeling 5 (2017), 198-220
Examples
library(MASS)
data<- gilgais
zetaci(data[, 1], data[, 2], a=c(0.25, 0.5, 0.75))