ROI {denvax} | R Documentation |
Compute the ROI surfaces given test and vaccine cost fractions.
Description
Compute the ROI surfaces given test and vaccine cost fractions.
Usage
ROI(rcoeffs, nus = seq(0.3, 0.9, by = 0.05), taus = 10^seq(-2, -0.5, by
= 0.05))
Arguments
rcoeffs |
a data.frame with the ROI surface coefficients from ROIcoeffs |
nus |
the series of normalized vaccine costs to use for ROI calcs |
taus |
the series of normalized test costs to use for ROI calcs |
Details
tabulates ROI
Value
a 'data.frame' ('data.table', if available) with columns:
- nu
numeric, the normalized vaccine cost used
- tau
numeric, the normalized test cost used
- mechanism
character, either "ordinal" or "binary" corresponding to the type of test
- A
integer; the age when routine test-then-vaccinate strategy starts (from
As
)- L
integer; the maximum number of tests for routine test-then-vaccinate strategy (from
Ls
)- cost
numeric; the intervention cost (as a fraction of second infection cost)
- benefit
-
numeric; the difference in health outcome cost (as a fraction of second infection cost) minus 'cost'; positive values indicate positive net benefit
- roi
numeric; return on investment: 'benefit' over 'cost'
Examples
require(denvax);
data(morrison2010) # has counts by age
fit <- with(morrison2010, serofit(sero=Seropositive, N=Number, age.min=Age))
m2010pop <- synthetic.pop(fit, runs = 10, popsize = 10) # small sample size for example run time
m2010lh <- nPxA(m2010pop)
L <- 5
rc <- ROIcoeffs(m2010lh, As=5:10, Ls=L)
rois <- ROI(rc, nus = 0.5, taus = 0.01)
srois <- subset(rois, mechanism == "binary")
mrois <- matrix(srois$roi, nrow = L)
contour(x=unique(srois$L), y=unique(srois$A), z=mrois,
xlab = "Max # of Tests", ylab = "Initial Age", main="ROI Contour"
)