cm.spline {demography} | R Documentation |
Monotonic interpolating splines
Description
Perform cubic spline monotonic interpolation of given data points, returning either a list of points obtained by the interpolation or a function performing the interpolation. The splines are constrained to be monotonically increasing (i.e., the slope is never negative).
Usage
cm.spline(x, y = NULL, n = 3 * length(x), xmin = min(x), xmax = max(x), ...)
cm.splinefun(x, y = NULL, ...)
Arguments
x , y |
vectors giving the coordinates of the points to be interpolated. Alternatively a single plotting structure can be specified: see |
n |
interpolation takes place at n equally spaced points spanning the interval [ |
xmin |
left-hand endpoint of the interpolation interval. |
xmax |
right-hand endpoint of the interpolation interval. |
... |
Other arguments are ignored. |
Details
These are simply wrappers to the splinefun
function family from the stats package.
Value
cm.spline |
returns a list containing components |
cm.splinefun |
returns a function which will perform cubic spline interpolation of the given data points. This is often more useful than |
Author(s)
Rob J Hyndman
References
Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977) Computer Methods for Mathematical Computations. Hyman (1983) SIAM J. Sci. Stat. Comput. 4(4):645-654. Dougherty, Edelman and Hyman 1989 Mathematics of Computation, 52: 471-494.
Examples
x <- seq(0,4,l=20)
y <- sort(rnorm(20))
plot(x,y)
lines(spline(x, y, n = 201), col = 2) # Not necessarily monotonic
lines(cm.spline(x, y, n = 201), col = 3) # Monotonic