degross_lpostBasic {degross} | R Documentation |
Log-posterior for given spline parameters, big bin (and optional: small bin) frequencies, tabulated sample moments and roughness penalty parameter. Compared to degross_lpost, no Fisher information matrix is computed and the gradient evaluation is optional, with a resulting computational gain.
Description
Log-posterior for given spline parameters, big bin (and optional: small bin) frequencies, tabulated sample moments and roughness penalty parameter. Compared to degross_lpost, no Fisher information matrix is computed and the gradient evaluation is optional, with a resulting computational gain.
Usage
degross_lpostBasic(phi, tau, n.i, degross.data,
use.moments = rep(TRUE,4), freq.min = 20, diag.only=FALSE,
gradient=FALSE,
penalize = TRUE, aa = 2, bb = 1e-6, pen.order = 3)
Arguments
phi |
Vector of K B-spline parameters |
tau |
Roughness penalty parameter. |
n.i |
Small bin frequencies. |
degross.data |
A degrossData.object created using the degrossData function. |
use.moments |
Vector with 4 logicals indicating which tabulated sample moments to use as soft constraints. Defaults: |
freq.min |
Minimal big bin frequency required to use the corresponding observed moments as soft constraints. Default: |
diag.only |
Logical indicating whether to ignore the off-diagonal elements of the variance-covariance matrix of the sample central moments. Default: FALSE. |
gradient |
Logical indicating if the gradient (Score) of the |
penalize |
Logical indicating whether a roughness penalty of order |
aa |
Real giving the first parameter in the Gamma prior for |
bb |
Real giving the second parameter in the Gamma prior for |
pen.order |
Integer giving the order of the roughness penalty. Default: |
Value
A list containing :
lpost.ni
:
value of the log-posterior based on the given small bin frequenciesn.i
and the tabulated sample moments.lpost.mj
:
value of the log-posterior based on the big bin frequenciesdegross.data$freq.j
and the tabulated sample moments.llik.ni
:
multinomial log-likelihood based on the given small bin frequenciesn.i
.llik.mj
:
multinomial log-likelihood based on the big bin frequenciesdegross.data$freq.j
resulting fromn.i
.moments.penalty
:
log of the joint (asymptotic) density for the observed sample moments.penalty
:
\log p(\phi|\tau) + \log p(\tau)
.M.j
:
theoretical moments of the density (resulting from\phi
) within a big bin.pi.i
:
small bin probabilities.ui
:
small bin midpoints.delta
:
width of the small bins.gamma.j
:
big bin probabilities.tau
:
reminder of the value of the roughness penalty parameter\tau
.phi
:
reminder of the vector of spline parameters (defining the density).n.i
:
reminder of the small bin frequencies given as input.freq.j
:
reminder of the big bin frequencies indegross.data$freq.j
.
Author(s)
Philippe Lambert p.lambert@uliege.be
References
Lambert, P. (2021) Moment-based density and risk estimation from grouped summary statistics. arXiv:2107.03883.
See Also
degross_lpost
, degross
, degross.object
.
Examples
sim = simDegrossData(n=3500, plotting=TRUE,choice=2) ## Generate grouped data
obj.data = degrossData(Big.bins=sim$Big.bins, freq.j=sim$freq.j, m.j=sim$m.j)
print(obj.data)
obj.fit = degross(obj.data) ## Estimate the underlying density
phi.hat = obj.fit$phi ; tau.hat = obj.fit$tau
## Evaluate the log-posterior at convergence
res = degross_lpostBasic(phi=phi.hat, tau=tau.hat, degross.data=obj.data,
gradient=TRUE)
print(res)