| degross_lpostBasic {degross} | R Documentation | 
Log-posterior for given spline parameters, big bin (and optional: small bin) frequencies, tabulated sample moments and roughness penalty parameter. Compared to degross_lpost, no Fisher information matrix is computed and the gradient evaluation is optional, with a resulting computational gain.
Description
Log-posterior for given spline parameters, big bin (and optional: small bin) frequencies, tabulated sample moments and roughness penalty parameter. Compared to degross_lpost, no Fisher information matrix is computed and the gradient evaluation is optional, with a resulting computational gain.
Usage
degross_lpostBasic(phi, tau, n.i, degross.data,
                          use.moments = rep(TRUE,4), freq.min = 20, diag.only=FALSE,
                          gradient=FALSE,
                          penalize = TRUE, aa = 2, bb = 1e-6, pen.order = 3)
Arguments
| phi | Vector of K B-spline parameters  | 
| tau | Roughness penalty parameter. | 
| n.i | Small bin frequencies. | 
| degross.data | A degrossData.object created using the degrossData function. | 
| use.moments | Vector with 4 logicals indicating which tabulated sample moments to use as soft constraints. Defaults:  | 
| freq.min | Minimal big bin frequency required to use the corresponding observed moments as soft constraints. Default:  | 
| diag.only | Logical indicating whether to ignore the off-diagonal elements of the variance-covariance matrix of the sample central moments. Default: FALSE. | 
| gradient | Logical indicating if the gradient (Score) of the  | 
| penalize | Logical indicating whether a roughness penalty of order  | 
| aa | Real giving the first parameter in the Gamma prior for  | 
| bb | Real giving the second parameter in the Gamma prior for  | 
| pen.order | Integer giving the order of the roughness penalty. Default:  | 
Value
A list containing :
- lpost.ni:-  value of the log-posterior based on the given small bin frequencies- n.iand the tabulated sample moments.
- lpost.mj:-  value of the log-posterior based on the big bin frequencies- degross.data$freq.jand the tabulated sample moments.
- llik.ni:-  multinomial log-likelihood based on the given small bin frequencies- n.i.
- llik.mj:-  multinomial log-likelihood based on the big bin frequencies- degross.data$freq.jresulting from- n.i.
- moments.penalty:-  log of the joint (asymptotic) density for the observed sample moments.
- penalty:-  - \log p(\phi|\tau) + \log p(\tau).
- M.j:-  theoretical moments of the density (resulting from- \phi) within a big bin.
- pi.i:-  small bin probabilities.
- ui:-  small bin midpoints.
- delta:-  width of the small bins.
- gamma.j:-  big bin probabilities.
- tau:-  reminder of the value of the roughness penalty parameter- \tau.
- phi:-  reminder of the vector of spline parameters (defining the density).
- n.i:-  reminder of the small bin frequencies given as input.
- freq.j:-  reminder of the big bin frequencies in- degross.data$freq.j.
Author(s)
Philippe Lambert p.lambert@uliege.be
References
Lambert, P. (2021) Moment-based density and risk estimation from grouped summary statistics. arXiv:2107.03883.
See Also
degross_lpost, degross, degross.object.
Examples
sim = simDegrossData(n=3500, plotting=TRUE,choice=2) ## Generate grouped data
obj.data = degrossData(Big.bins=sim$Big.bins, freq.j=sim$freq.j, m.j=sim$m.j)
print(obj.data)
obj.fit = degross(obj.data) ## Estimate the underlying density
phi.hat = obj.fit$phi ; tau.hat = obj.fit$tau
## Evaluate the log-posterior at convergence
res = degross_lpostBasic(phi=phi.hat, tau=tau.hat, degross.data=obj.data,
                         gradient=TRUE)
print(res)