degross_lpost {degross}R Documentation

Log-posterior (with gradient and Fisher information) for given spline parameters, small bin frequencies, tabulated sample moments and roughness penalty parameter. This function is maximized during the M-step of the EM algorithm to estimate the B-spline parameters entering the density specification.

Description

Log-posterior (with gradient and Fisher information) for given spline parameters, small bin frequencies, tabulated sample moments and roughness penalty parameter. This function is maximized during the M-step of the EM algorithm to estimate the B-spline parameters entering the density specification.

Usage

degross_lpost(phi, tau, n.i, degross.data,
                     use.moments = rep(TRUE,4), freq.min = 20, diag.only=FALSE,
                     penalize = TRUE, aa = 2, bb = 1e-6, pen.order = 3)

Arguments

phi

Vector of K B-spline parameters \phi to specify the log-density.

tau

Roughness penalty parameter.

n.i

Small bin frequencies.

degross.data

A degrossData.object created using the degrossData function.

use.moments

Vector with 4 logicals indicating which tabulated sample moments to use as soft constraints. Defaults: rep(TRUE,4).

freq.min

Minimal big bin frequency required to use the corresponding observed moments as soft constraints. Default: 20.

diag.only

Logical indicating whether to ignore the off-diagonal elements of the variance-covariance matrix of the sample central moments. Default: FALSE.

penalize

Logical indicating whether a roughness penalty of order pen.order is required (with \tau \sim G(aa,bb)). Default: TRUE.

aa

Positive real giving the first parameter in the Gamma prior for tau. Default: 2.

bb

Positive real giving the second parameter in the Gamma prior for tau. Default: 1e-6.

pen.order

Integer giving the order of the roughness penalty. Default: 3.

Value

A list containing :

Author(s)

Philippe Lambert p.lambert@uliege.be

References

Lambert, P. (2021) Moment-based density and risk estimation from grouped summary statistics. arXiv:2107.03883.

See Also

degross_lpostBasic, degross, degross.object.

Examples

sim = simDegrossData(n=3500, plotting=TRUE,choice=2) ## Generate grouped data
obj.data = degrossData(Big.bins=sim$Big.bins, freq.j=sim$freq.j, m.j=sim$m.j)
print(obj.data)
obj.fit = degross(obj.data) ## Estimate the underlying density
## Evaluate the log-posterior at convergence
res = with(obj.fit, degross_lpost(phi, tau, n.i, obj.data, diag.only=diag.only))
print(res$Score) ## Score of the log posterior at convergence


[Package degross version 0.9.0 Index]