| degross_lpost {degross} | R Documentation |
Log-posterior (with gradient and Fisher information) for given spline parameters, small bin frequencies, tabulated sample moments and roughness penalty parameter. This function is maximized during the M-step of the EM algorithm to estimate the B-spline parameters entering the density specification.
Description
Log-posterior (with gradient and Fisher information) for given spline parameters, small bin frequencies, tabulated sample moments and roughness penalty parameter. This function is maximized during the M-step of the EM algorithm to estimate the B-spline parameters entering the density specification.
Usage
degross_lpost(phi, tau, n.i, degross.data,
use.moments = rep(TRUE,4), freq.min = 20, diag.only=FALSE,
penalize = TRUE, aa = 2, bb = 1e-6, pen.order = 3)
Arguments
phi |
Vector of K B-spline parameters |
tau |
Roughness penalty parameter. |
n.i |
Small bin frequencies. |
degross.data |
A degrossData.object created using the degrossData function. |
use.moments |
Vector with 4 logicals indicating which tabulated sample moments to use as soft constraints. Defaults: |
freq.min |
Minimal big bin frequency required to use the corresponding observed moments as soft constraints. Default: |
diag.only |
Logical indicating whether to ignore the off-diagonal elements of the variance-covariance matrix of the sample central moments. Default: FALSE. |
penalize |
Logical indicating whether a roughness penalty of order |
aa |
Positive real giving the first parameter in the Gamma prior for |
bb |
Positive real giving the second parameter in the Gamma prior for |
pen.order |
Integer giving the order of the roughness penalty. Default: |
Value
A list containing :
lpost,lpost.ni: value of the log-posterior based on the given small bin frequenciesn.iand the tabulated sample moments.lpost.mj: value of the log-posterior based on the big bin frequenciesdegross.data$freq.jand the tabulated sample moments.llik.ni: multinomial log-likelihood based on the given small bin frequenciesn.i.llik.mj: multinomial log-likelihood based on the big bin frequenciesdegross.data$freq.j.moments.penalty: log of the joint (asymptotic) density for the observed sample moments.penalty: \log p(\phi|\tau) + \log p(\tau).Score,Score.ni: score (w.r.t.\phi) oflpost.ni.Score.mj: score (w.r.t.\phi) oflpost.mj.Fisher&Fisher.ni: information matrix (w.r.t.\phi) oflpost.ni.Fisher.mj: information matrix (w.r.t.\phi) oflpost.mj.M.j: theoretical moments of the density (resulting from\phi) within a big bin.pi.i: small bin probabilities.ui: small bin midpoints.delta: width of the small bins.gamma.j: Big bin probabilities.tau: reminder of the value of the roughness penalty parameter\tau.phi: reminder of the vector of spline parameters (defining the density).n.i: reminder of the small bin frequencies given as input.
Author(s)
Philippe Lambert p.lambert@uliege.be
References
Lambert, P. (2021) Moment-based density and risk estimation from grouped summary statistics. arXiv:2107.03883.
See Also
degross_lpostBasic, degross, degross.object.
Examples
sim = simDegrossData(n=3500, plotting=TRUE,choice=2) ## Generate grouped data
obj.data = degrossData(Big.bins=sim$Big.bins, freq.j=sim$freq.j, m.j=sim$m.j)
print(obj.data)
obj.fit = degross(obj.data) ## Estimate the underlying density
## Evaluate the log-posterior at convergence
res = with(obj.fit, degross_lpost(phi, tau, n.i, obj.data, diag.only=diag.only))
print(res$Score) ## Score of the log posterior at convergence