llpln {degreenet} | R Documentation |
Calculate the Conditional log-likelihood for the Poisson Lognormal Distributions
Description
Compute the Conditional Log-likelihood for the Poisson Lognormal Discrete Probability Distribution. The likelihood is calculated conditionl on the count being at least the cutoff value and less than or equal to the cutabove value.
Usage
llpln(v, x, cutoff=1,cutabove=1000,xr=1:10000,hellinger=FALSE,logn = TRUE)
Arguments
v |
A vector of parameters for the Yule (a 1-vector - the scaling exponent). |
x |
A vector of counts (one per observation). |
cutoff |
Calculate estimates conditional on exceeding this value. |
cutabove |
Calculate estimates conditional on not exceeding this value. |
xr |
range of count values to use to approximate the set of all realistic counts. |
hellinger |
Calculate the Hellinger distance of the parametric model from the data instead of the log-likelihood? |
logn |
Use logn parametrization, that is, mean and variance on the observation scale. |
Value
the log-likelihood for the data x
at parameter value v
(or the Hellinder distance if hellinger=TRUE
).
Note
See the papers on https://handcock.github.io/?q=Holland for details
References
Jones, J. H. and Handcock, M. S. "An assessment of preferential attachment as a mechanism for human sexual network formation," Proceedings of the Royal Society, B, 2003, 270, 1123-1128.
See Also
aplnmle, llplnall, dpln
Examples
# Simulate a Poisson Lognormal distribution over 100
# observations with lognormal mean -1 and logormal standard deviation 1.
set.seed(1)
s4 <- simpln(n=100, v=c(-1,1))
table(s4)
#
# Calculate the MLE and an asymptotic confidence
# interval for rho
#
s4est <- aplnmle(s4)
s4est
#
# Calculate the MLE and an asymptotic confidence
# interval for rho under the Waring model
#
s4warest <- awarmle(s4)
s4warest
#
# Compare the log-likelihoods for the two models
#
llpln(v=s4est$theta,x=s4)
llwar(v=s4warest$theta,x=s4)