layer_generator {deepregression} | R Documentation |
Function that creates layer for each processor
Description
Function that creates layer for each processor
Usage
layer_generator(
term,
output_dim,
param_nr,
controls,
layer_class = tf$keras$layers$Dense,
without_layer = tf$identity,
name = makelayername(term, param_nr),
further_layer_args = NULL,
layer_args_names = NULL,
units = as.integer(output_dim),
...
)
int_processor(term, data, output_dim, param_nr, controls)
lin_processor(term, data, output_dim, param_nr, controls)
gam_processor(term, data, output_dim, param_nr, controls)
Arguments
term |
character; term in the formula |
output_dim |
integer; number of units in the layer |
param_nr |
integer; identifier for models with more than one additive predictor |
controls |
list; control arguments which allow to pass further information |
layer_class |
a tf or keras layer function |
without_layer |
function to be used as
layer if |
name |
character; name of layer.
if NULL, |
further_layer_args |
named list; further arguments passed to the layer |
layer_args_names |
character vector; if NULL, default layer args will be used. Needs to be set for layers that do not provide the arguments of a default Dense layer. |
units |
integer; number of units for layer |
... |
other keras layer parameters |
data |
data frame; the data used in processors |
Value
a basic processor list structure
[Package deepregression version 1.0.0 Index]