sae.dnn.train {deepnet} | R Documentation |
Training a Deep neural network with weights initialized by Stacked AutoEncoder
Description
Training a Deep neural network with weights initialized by Stacked AutoEncoder
Usage
sae.dnn.train(x, y, hidden = c(1), activationfun = "sigm", learningrate = 0.8,
momentum = 0.5, learningrate_scale = 1, output = "sigm", sae_output = "linear",
numepochs = 3, batchsize = 100, hidden_dropout = 0, visible_dropout = 0)
Arguments
x |
matrix of x values for examples |
y |
vector or matrix of target values for examples |
vector for number of units of hidden layers.Default is c(10). | |
activationfun |
activation function of hidden unit.Can be "sigm","linear" or "tanh".Default is "sigm" for logistic function |
learningrate |
learning rate for gradient descent. Default is 0.8. |
momentum |
momentum for gradient descent. Default is 0.5 . |
learningrate_scale |
learning rate will be mutiplied by this scale after every iteration. Default is 1 . |
numepochs |
number of iteration for samples Default is 3. |
batchsize |
size of mini-batch. Default is 100. |
output |
function of output unit, can be "sigm","linear" or "softmax". Default is "sigm". |
sae_output |
function of autoencoder output unit, can be "sigm","linear" or "softmax". Default is "linear". |
drop out fraction for hidden layer. Default is 0. | |
visible_dropout |
drop out fraction for input layer Default is 0. |
Author(s)
Xiao Rong
Examples
Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
x <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
y <- c(rep(1, 50), rep(0, 50))
dnn <- sae.dnn.train(x, y, hidden = c(5, 5))
## predict by dnn
test_Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
test_Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
test_x <- matrix(c(test_Var1, test_Var2), nrow = 100, ncol = 2)
nn.test(dnn, test_x, y)