rbm.train {deepnet} | R Documentation |
Training a RBM(restricted Boltzmann Machine)
Description
Training a RBM(restricted Boltzmann Machine)
Usage
rbm.train(x, hidden, numepochs = 3, batchsize = 100, learningrate = 0.8,
learningrate_scale = 1, momentum = 0.5, visible_type = "bin", hidden_type = "bin",
cd = 1)
Arguments
x |
matrix of x values for examples |
number of hidden units | |
visible_type |
activation function of input unit.Only support "sigm" now |
activation function of hidden unit.Only support "sigm" now | |
learningrate |
learning rate for gradient descent. Default is 0.8. |
momentum |
momentum for gradient descent. Default is 0.5 . |
learningrate_scale |
learning rate will be mutiplied by this scale after every iteration. Default is 1 . |
numepochs |
number of iteration for samples Default is 3. |
batchsize |
size of mini-batch. Default is 100. |
cd |
number of iteration for Gibbs sample of CD algorithm. |
Author(s)
Xiao Rong
Examples
Var1 <- c(rep(1, 50), rep(0, 50))
Var2 <- c(rep(0, 50), rep(1, 50))
x3 <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
r1 <- rbm.train(x3, 10, numepochs = 20, cd = 10)
[Package deepnet version 0.2.1 Index]