nn.train {deepnet} | R Documentation |
Training Neural Network
Description
Training single or mutiple hidden layers neural network by BP
Usage
nn.train(x, y, initW = NULL, initB = NULL, hidden = c(10), activationfun = "sigm",
learningrate = 0.8, momentum = 0.5, learningrate_scale = 1, output = "sigm",
numepochs = 3, batchsize = 100, hidden_dropout = 0, visible_dropout = 0)
Arguments
x |
matrix of x values for examples |
y |
vector or matrix of target values for examples |
initW |
initial weights. If missing chosen at random |
initB |
initial bias. If missing chosen at random |
vector for number of units of hidden layers.Default is c(10). | |
activationfun |
activation function of hidden unit.Can be "sigm","linear" or "tanh".Default is "sigm" for logistic function |
learningrate |
learning rate for gradient descent. Default is 0.8. |
momentum |
momentum for gradient descent. Default is 0.5 . |
learningrate_scale |
learning rate will be mutiplied by this scale after every iteration. Default is 1 . |
numepochs |
number of iteration for samples Default is 3. |
batchsize |
size of mini-batch. Default is 100. |
output |
function of output unit, can be "sigm","linear" or "softmax". Default is "sigm". |
drop out fraction for hidden layer. Default is 0. | |
visible_dropout |
drop out fraction for input layer Default is 0. |
Author(s)
Xiao Rong
Examples
Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
x <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
y <- c(rep(1, 50), rep(0, 50))
nn <- nn.train(x, y, hidden = c(5))