fit_two_layer {deepgp} | R Documentation |
MCMC sampling for two layer deep GP
Description
Conducts MCMC sampling of hyperparameters and hidden layer
w
for a two layer deep GP. Separate length scale
parameters theta_w
and theta_y
govern the correlation
strength of the hidden layer and outer layer respectively. Nugget
parameter g
governs noise on the outer layer. In Matern
covariance, v
governs smoothness.
Usage
fit_two_layer(
x,
y,
nmcmc = 10000,
D = ifelse(is.matrix(x), ncol(x), 1),
pmx = FALSE,
verb = TRUE,
w_0 = NULL,
g_0 = 0.01,
theta_y_0 = 0.1,
theta_w_0 = 0.1,
true_g = NULL,
settings = NULL,
cov = c("matern", "exp2"),
v = 2.5,
vecchia = FALSE,
m = min(25, length(y) - 1),
ordering = NULL
)
Arguments
x |
vector or matrix of input locations |
y |
vector of response values |
nmcmc |
number of MCMC iterations |
D |
integer designating dimension of hidden layer, defaults to
dimension of |
pmx |
"prior mean X", logical indicating whether W should have prior
mean of X ( |
verb |
logical indicating whether to print iteration progress |
w_0 |
initial value for hidden layer |
g_0 |
initial value for |
theta_y_0 |
initial value for |
theta_w_0 |
initial value for |
true_g |
if true nugget is known it may be specified here (set to a small value to make fit deterministic). Note - values that are too small may cause numerical issues in matrix inversions. |
settings |
hyperparameters for proposals and priors (see details) |
cov |
covariance kernel, either Matern or squared exponential
( |
v |
Matern smoothness parameter (only used if |
vecchia |
logical indicating whether to use Vecchia approximation |
m |
size of Vecchia conditioning sets (only used if
|
ordering |
optional ordering for Vecchia approximation, must correspond
to rows of |
Details
Maps inputs x
through hidden layer w
to outputs
y
. Conducts sampling of the hidden layer using Elliptical
Slice sampling. Utilizes Metropolis Hastings sampling of the length
scale and nugget parameters with proposals and priors controlled by
settings
. When true_g
is set to a specific value, the
nugget is not estimated. When vecchia = TRUE
, all calculations
leverage the Vecchia approximation with specified conditioning set size
m
. Vecchia approximation is only implemented for
cov = "matern"
.
NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient computation. This function will produce a warning message if the package was installed without OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP parallelization, download the package source code and install using the gcc/g++ compiler.
Proposals for g
, theta_y
, and
theta_w
follow a uniform sliding window scheme, e.g.
g_star <- runif(1, l * g_t / u, u * g_t / l)
,
with defaults l = 1
and u = 2
provided in settings
.
To adjust these, set settings = list(l = new_l, u = new_u)
.
Priors on g
, theta_y
, and theta_w
follow Gamma
distributions with shape parameters (alpha
) and rate parameters
(beta
) controlled within the settings
list object.
Defaults are
-
settings$alpha$g <- 1.5
-
settings$beta$g <- 3.9
-
settings$alpha$theta_w <- 1.5
-
settings$beta$theta_w <- 3.9 / 4
-
settings$alpha$theta_y <- 1.5
-
settings$beta$theta_y <- 3.9 / 6
These priors are designed for x
scaled to
[0, 1] and y
scaled to have mean 0 and variance 1. These may be
adjusted using the settings
input.
When w_0 = NULL
, the hidden layer is initialized at x
(i.e. the identity mapping). If w_0
is of dimension
nrow(x) - 1
by D
, the final row is predicted using kriging.
This is helpful in sequential design when adding a new input location
and starting the MCMC at the place where the previous MCMC left off.
The output object of class dgp2
or dgp2vec
is designed for
use with continue
, trim
, and predict
.
Value
a list of the S3 class dgp2
or dgp2vec
with elements:
-
x
: copy of input matrix -
y
: copy of response vector -
nmcmc
: number of MCMC iterations -
settings
: copy of proposal/prior settings -
v
: copy of Matern smoothness parameter (v = 999
indicatescov = "exp2"
) -
g
: vector of MCMC samples forg
-
theta_y
: vector of MCMC samples fortheta_y
(length scale of outer layer) -
theta_w
: matrix of MCMC samples fortheta_w
(length scale of inner layer) -
tau2
: vector of MLE estimates fortau2
(scale parameter of outer layer) -
w
: list of MCMC samples for hidden layerw
-
ll
: vector of MVN log likelihood of the outer layer for reach Gibbs iteration -
time
: computation time in seconds
References
Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments.
*Ph.D. Dissertation, Department of Statistics, Virginia Polytechnic Institute and State University.*
Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep
Gaussian process surrogates. *Technometrics, 65,* 4-18. arXiv:2012.08015
Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep
Gaussian processes for computer experiments.
*Journal of Computational and Graphical Statistics,* 1-14. arXiv:2204.02904
Examples
# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/
# G function (https://www.sfu.ca/~ssurjano/gfunc.html)
f <- function(xx, a = (c(1:length(xx)) - 1) / 2) {
new1 <- abs(4 * xx - 2) + a
new2 <- 1 + a
prod <- prod(new1 / new2)
return((prod - 1) / 0.86)
}
# Training data
d <- 1
n <- 20
x <- matrix(runif(n * d), ncol = d)
y <- apply(x, 1, f)
# Testing data
n_test <- 100
xx <- matrix(runif(n_test * d), ncol = d)
yy <- apply(xx, 1, f)
plot(xx[order(xx)], yy[order(xx)], type = "l")
points(x, y, col = 2)
# Example 1: full model (nugget estimated, using continue)
fit <- fit_two_layer(x, y, nmcmc = 1000)
plot(fit)
fit <- continue(fit, 1000)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit, hidden = TRUE)
# Example 2: Vecchia approximated model
# (Vecchia approximation is faster for larger data sizes)
fit <- fit_two_layer(x, y, nmcmc = 2000, vecchia = TRUE, m = 10)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit, hidden = TRUE)
# Example 3: Vecchia approximated model (re-approximated after burn-in)
fit <- fit_two_layer(x, y, nmcmc = 1000, vecchia = TRUE, m = 10)
fit <- continue(fit, 1000, re_approx = TRUE)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit, hidden = TRUE)