fit_one_layer {deepgp} | R Documentation |
MCMC sampling for one layer GP
Description
Conducts MCMC sampling of hyperparameters for a one layer
GP. Length scale parameter theta
governs
the strength of the correlation and nugget parameter g
governs noise. In Matern covariance, v
governs smoothness.
Usage
fit_one_layer(
x,
y,
nmcmc = 10000,
sep = FALSE,
verb = TRUE,
g_0 = 0.01,
theta_0 = 0.1,
true_g = NULL,
settings = NULL,
cov = c("matern", "exp2"),
v = 2.5,
vecchia = FALSE,
m = min(25, length(y) - 1),
ordering = NULL
)
Arguments
x |
vector or matrix of input locations |
y |
vector of response values |
nmcmc |
number of MCMC iterations |
sep |
logical indicating whether to use separable ( |
verb |
logical indicating whether to print iteration progress |
g_0 |
initial value for |
theta_0 |
initial value for |
true_g |
if true nugget is known it may be specified here (set to a small value to make fit deterministic). Note - values that are too small may cause numerical issues in matrix inversions. |
settings |
hyperparameters for proposals and priors (see details) |
cov |
covariance kernel, either Matern or squared exponential
( |
v |
Matern smoothness parameter (only used if |
vecchia |
logical indicating whether to use Vecchia approximation |
m |
size of Vecchia conditioning sets (only used if
|
ordering |
optional ordering for Vecchia approximation, must correspond
to rows of |
Details
Utilizes Metropolis Hastings sampling of the length scale and
nugget parameters with proposals and priors controlled by
settings
. When true_g
is set to a specific value, the
nugget is not estimated. When vecchia = TRUE
, all calculations
leverage the Vecchia approximation with specified conditioning set size
m
. Vecchia approximation is only implemented for
cov = "matern"
.
NOTE on OpenMP: The Vecchia implementation relies on OpenMP parallelization for efficient computation. This function will produce a warning message if the package was installed without OpenMP (this is the default for CRAN packages installed on Apple machines). To set up OpenMP parallelization, download the package source code and install using the gcc/g++ compiler.
Proposals for g
and theta
follow a uniform sliding window
scheme, e.g.
g_star <- runif(1, l * g_t / u, u * g_t / l)
,
with defaults l = 1
and u = 2
provided in settings
.
To adjust these, set settings = list(l = new_l, u = new_u)
.
Priors on g
and theta
follow Gamma distributions with
shape parameters (alpha
) and rate parameters (beta
)
controlled within the settings
list object. Defaults are
-
settings$alpha$g <- 1.5
-
settings$beta$g <- 3.9
-
settings$alpha$theta <- 1.5
-
settings$beta$theta <- 3.9 / 1.5
These priors are designed for x
scaled
to [0, 1] and y
scaled to have mean 0 and variance 1. These may
be adjusted using the settings
input.
The output object of class gp
is designed for use with
continue
, trim
, and predict
.
Value
a list of the S3 class gp
or gpvec
with elements:
-
x
: copy of input matrix -
y
: copy of response vector -
nmcmc
: number of MCMC iterations -
settings
: copy of proposal/prior settings -
v
: copy of Matern smoothness parameter (v = 999
indicatescov = "exp2"
) -
g
: vector of MCMC samples forg
-
theta
: vector of MCMC samples fortheta
-
tau2
: vector of MLE estimates fortau2
(scale parameter) -
ll
: vector of MVN log likelihood for each Gibbs iteration -
time
: computation time in seconds
References
Sauer, A. (2023). Deep Gaussian process surrogates for computer experiments.
*Ph.D. Dissertation, Department of Statistics, Virginia Polytechnic Institute and State University.*
Sauer, A., Gramacy, R.B., & Higdon, D. (2023). Active learning for deep
Gaussian process surrogates. *Technometrics, 65,* 4-18. arXiv:2012.08015
Sauer, A., Cooper, A., & Gramacy, R. B. (2023). Vecchia-approximated deep
Gaussian processes for computer experiments.
*Journal of Computational and Graphical Statistics,* 1-14. arXiv:2204.02904
Examples
# Additional examples including real-world computer experiments are available at:
# https://bitbucket.org/gramacylab/deepgp-ex/
# G function (https://www.sfu.ca/~ssurjano/gfunc.html)
f <- function(xx, a = (c(1:length(xx)) - 1) / 2) {
new1 <- abs(4 * xx - 2) + a
new2 <- 1 + a
prod <- prod(new1 / new2)
return((prod - 1) / 0.86)
}
# Training data
d <- 1
n <- 20
x <- matrix(runif(n * d), ncol = d)
y <- apply(x, 1, f)
# Testing data
n_test <- 100
xx <- matrix(runif(n_test * d), ncol = d)
yy <- apply(xx, 1, f)
plot(xx[order(xx)], yy[order(xx)], type = "l")
points(x, y, col = 2)
# Example 1: full model (nugget fixed)
fit <- fit_one_layer(x, y, nmcmc = 2000, true_g = 1e-6)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)
# Example 2: full model (nugget estimated, EI calculated)
fit <- fit_one_layer(x, y, nmcmc = 2000)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1, EI = TRUE)
plot(fit)
par(new = TRUE) # overlay EI
plot(xx[order(xx)], fit$EI[order(xx)], type = 'l', lty = 2,
axes = FALSE, xlab = '', ylab = '')
# Example 3: Vecchia approximated model
fit <- fit_one_layer(x, y, nmcmc = 2000, vecchia = TRUE, m = 10)
plot(fit)
fit <- trim(fit, 1000, 2)
fit <- predict(fit, xx, cores = 1)
plot(fit)