nbiaspar {deepNN} | R Documentation |
nbiaspar function
Description
A function to calculate the number of bias parameters in a neural network, see ?network
Usage
nbiaspar(net)
Arguments
net |
an object of class network, see ?network |
Value
an integer, the number of bias parameters in a neural network
References
Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
http://neuralnetworksanddeeplearning.com/
See Also
network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation
Examples
net <- network( dims = c(5,10,2),
activ=list(ReLU(),softmax()))
nbiaspar(net)