backpropagation_MLP {deepNN} | R Documentation |
backpropagation_MLP function
Description
A function to perform backpropagation for a multilayer perceptron.
Usage
backpropagation_MLP(MLPNet, loss, truth)
Arguments
MLPNet |
output from the function MLP_net, as applied to some data with given parameters |
loss |
the loss function, see ?Qloss and ?multinomial |
truth |
the truth, a list of vectors to compare with output from the feed-forward network |
Value
a list object containing the cost and the gradient with respect to each of the model parameters
References
Ian Goodfellow, Yoshua Bengio, Aaron Courville, Francis Bach. Deep Learning. (2016)
Terrence J. Sejnowski. The Deep Learning Revolution (The MIT Press). (2018)
Neural Networks YouTube playlist by 3brown1blue: https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
http://neuralnetworksanddeeplearning.com/
See Also
network, train, backprop_evaluate, MLP_net, backpropagation_MLP, logistic, ReLU, smoothReLU, ident, softmax, Qloss, multinomial, NNgrad_test, weights2list, bias2list, biasInit, memInit, gradInit, addGrad, nnetpar, nbiaspar, addList, no_regularisation, L1_regularisation, L2_regularisation