calcDuration {debest} | R Documentation |
Calculate the study duration based on Weibull distributions.
Description
Calculate the study duration based on Weibull distributions.
Usage
calcDuration(
d,
n,
proportion,
SHAPEV,
SCALEV,
LAMW,
A,
BETA,
conf.level = 0.9,
nsim = 10000
)
Arguments
d |
- scalar, target number of events. |
n |
- scalar, sample size. |
proportion |
- vector of percentages of the subgroup. |
SHAPEV |
- vector of shape parameters of Weibull survival distributions of the subgroups. |
SCALEV |
- vector of scale parameters of Weibull survival distributions of the subgroups. |
LAMW |
- vector of exponential drop-out distribution parameters of the subgroups. |
A |
- vector of enrollment durations of the subgroups. |
BETA |
- vector of beta distribution parameters of the subgroups. |
conf.level |
- scalar, confidence level, default 0.9. |
nsim |
- scalar, number of repetitions, default 1e4. |
Value
study duration estimate, d_med, and the confidence interval (d_lower, d_upper), as well as all the realizations, Z_d, of the study duration from the simulation.
References
Hong Zhang, Jie Pu, Shibing Deng, Satrajit Roychoudhury, Haitao Chu and Douglas Robinson. "Study Duration Prediction for Clinical Trials with Time-to-Event Endpoints Using Mixture Distributions Accounting for Heterogeneous Population", arXiv:2401.00540.
Examples
res_weibull = getWeilbull(dat_udca)
res_beta = getBeta(as.numeric(dat_udca$entry.dt))
prop = c(table(dat_udca$group)/length(dat_udca$group))
SHAPEV = res_weibull$shape
SCALEV = res_weibull$scale
LAMW = rep(-log(1 - 0.1)/6, 4)
A = rep(res_beta$a/30.416, 4) # convert days to months
BETA = rep(res_beta$b_Mean, 4)
myres1 = calcDuration(d=50, n=169, proportion=prop, SHAPEV, SCALEV, LAMW=LAMW, A, BETA)
c(myres1$d_lower, myres1$d_med, myres1$d_upper)
# drop-out will make the target number of events not achievable
myres2 = calcDuration(d=80, n=169, proportion=prop, SHAPEV, SCALEV, LAMW=LAMW, A, BETA)
c(myres2$d_lower, myres2$d_med, myres2$d_upper)
# If there is no drop-out
myres3 = calcDuration(d=80, n=169, proportion=prop, SHAPEV, SCALEV, LAMW=rep(0, 4), A, BETA)
c(myres3$d_lower, myres3$d_med, myres3$d_upper)