rk {deSolve} | R Documentation |
Explicit One-Step Solvers for Ordinary Differential Equations (ODE)
Description
Solving initial value problems for non-stiff systems of first-order ordinary differential equations (ODEs).
The R function rk
is a top-level function that provides
interfaces to a collection of common explicit one-step solvers of the
Runge-Kutta family with fixed or variable time steps.
The system of ODE's is written as an R function (which may, of
course, use .C
, .Fortran
,
.Call
, etc., to call foreign code) or be defined in
compiled code that has been dynamically loaded. A vector of
parameters is passed to the ODEs, so the solver may be used as part of
a modeling package for ODEs, or for parameter estimation using any
appropriate modeling tool for non-linear models in R such as
optim
, nls
, nlm
or
nlme
Usage
rk(y, times, func, parms, rtol = 1e-6, atol = 1e-6,
verbose = FALSE, tcrit = NULL, hmin = 0, hmax = NULL,
hini = hmax, ynames = TRUE, method = rkMethod("rk45dp7", ... ),
maxsteps = 5000, dllname = NULL, initfunc = dllname,
initpar = parms, rpar = NULL, ipar = NULL,
nout = 0, outnames = NULL, forcings = NULL,
initforc = NULL, fcontrol = NULL, events = NULL, ...)
Arguments
y |
the initial (state) values for the ODE system. If |
times |
times at which explicit estimates for |
func |
either an R-function that computes the values of the derivatives in the ODE system (the model definition) at time t, or a character string giving the name of a compiled function in a dynamically loaded shared library. If The return value of If |
parms |
vector or list of parameters used in |
rtol |
relative error tolerance, either a scalar or an array as
long as |
atol |
absolute error tolerance, either a scalar or an array as
long as |
tcrit |
if not |
verbose |
a logical value that, when TRUE, triggers more verbose output from the ODE solver. |
hmin |
an optional minimum value of the integration stepsize. In
special situations this parameter may speed up computations with the
cost of precision. Don't use |
hmax |
an optional maximum value of the integration stepsize. If
not specified, |
hini |
initial step size to be attempted; if 0, the initial step
size is determined automatically by solvers with flexible time step.
For fixed step methods, setting |
ynames |
if |
method |
the integrator to use. This can either be a string
constant naming one of the pre-defined methods or a call to function
|
maxsteps |
average maximal number of steps per output interval
taken by the solver. This argument is defined such as to ensure
compatibility with the Livermore-solvers. |
dllname |
a string giving the name of the shared library
(without extension) that contains all the compiled function or
subroutine definitions refered to in |
initfunc |
if not |
initpar |
only when ‘dllname’ is specified and an
initialisation function |
rpar |
only when ‘dllname’ is specified: a vector with
double precision values passed to the dll-functions whose names are
specified by |
ipar |
only when ‘dllname’ is specified: a vector with
integer values passed to the dll-functions whose names are specified
by |
nout |
only used if |
outnames |
only used if ‘dllname’ is specified and
|
forcings |
only used if ‘dllname’ is specified: a list with
the forcing function data sets, each present as a two-columned matrix,
with (time,value); interpolation outside the interval
[min( See forcings or package vignette |
initforc |
if not |
fcontrol |
A list of control parameters for the forcing functions.
See forcings or vignette |
events |
A matrix or data frame that specifies events, i.e. when the value of a
state variable is suddenly changed. See events for more information.
Not also that if events are specified, then polynomial interpolation
is switched off and integration takes place from one external time step
to the next, with an internal step size less than or equal the difference
of two adjacent points of |
... |
additional arguments passed to |
Details
Function rk
is a generalized implementation that can be used to
evaluate different solvers of the Runge-Kutta family of explicit ODE
solvers. A pre-defined set of common method parameters is in function
rkMethod
which also allows to supply user-defined
Butcher tables.
The input parameters rtol
, and atol
determine the error
control performed by the solver. The solver will control the vector
of estimated local errors in y, according to an inequality of
the form max-norm of ( e/ewt ) 1, where
ewt is a vector of positive error weights. The values of
rtol
and atol
should all be non-negative. The form of
ewt is:
where multiplication of two vectors is element-by-element.
Models can be defined in R as a user-supplied
R-function, that must be called as: yprime = func(t, y,
parms)
. t
is the current time point in the integration,
y
is the current estimate of the variables in the ODE system.
The return value of func
should be a list, whose first element
is a vector containing the derivatives of y
with respect to
time, and whose second element contains output variables that are
required at each point in time. Examples are given below.
Value
A matrix of class deSolve
with up to as many rows as elements
in times
and as many columns as elements in y
plus the
number of "global" values returned in the next elements of the return
from func
, plus and additional column for the time value.
There will be a row for each element in times
unless the
integration routine returns with an unrecoverable error. If y
has a names attribute, it will be used to label the columns of the
output value.
Note
Arguments rpar
and ipar
are provided for compatibility
with lsoda
.
Starting with version 1.8 implicit Runge-Kutta methods are also
supported by this general rk
interface, however their
implementation is still experimental. Instead of this you may
consider radau
for a specific full implementation of an
implicit Runge-Kutta method.
Author(s)
Thomas Petzoldt thomas.petzoldt@tu-dresden.de
References
Butcher, J. C. (1987) The numerical analysis of ordinary differential equations, Runge-Kutta and general linear methods, Wiley, Chichester and New York.
Engeln-Muellges, G. and Reutter, F. (1996) Numerik Algorithmen: Entscheidungshilfe zur Auswahl und Nutzung. VDI Verlag, Duesseldorf.
Hindmarsh, Alan C. (1983) ODEPACK, A Systematized Collection of ODE Solvers; in p.55–64 of Stepleman, R.W. et al.[ed.] (1983) Scientific Computing, North-Holland, Amsterdam.
Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (2007) Numerical Recipes in C. Cambridge University Press.
See Also
For most practical cases, solvers of the Livermore family (i.e. the ODEPACK solvers, see below) are superior. Some of them are also suitable for stiff ODEs, differential algebraic equations (DAEs), or partial differential equations (PDEs).
-
rkMethod
for a list of available Runge-Kutta parameter sets, -
rk4
andeuler
for special versions without interpolation (and less overhead), -
lsoda
,lsode
,lsodes
,lsodar
,vode
,daspk
for solvers of the Livermore family, -
ode
for a general interface to most of the ODE solvers, -
ode.band
for solving models with a banded Jacobian, -
ode.1D
for integrating 1-D models, -
ode.2D
for integrating 2-D models, -
ode.3D
for integrating 3-D models, -
diagnostics
to print diagnostic messages.
Examples
## =======================================================================
## Example: Resource-producer-consumer Lotka-Volterra model
## =======================================================================
## Notes:
## - Parameters are a list, names accessible via "with" function
## - Function sigimp passed as an argument (input) to model
## (see also ode and lsoda examples)
SPCmod <- function(t, x, parms, input) {
with(as.list(c(parms, x)), {
import <- input(t)
dS <- import - b*S*P + g*C # substrate
dP <- c*S*P - d*C*P # producer
dC <- e*P*C - f*C # consumer
res <- c(dS, dP, dC)
list(res)
})
}
## The parameters
parms <- c(b = 0.001, c = 0.1, d = 0.1, e = 0.1, f = 0.1, g = 0.0)
## vector of timesteps
times <- seq(0, 200, length = 101)
## external signal with rectangle impulse
signal <- data.frame(times = times,
import = rep(0, length(times)))
signal$import[signal$times >= 10 & signal$times <= 11] <- 0.2
sigimp <- approxfun(signal$times, signal$import, rule = 2)
## Start values for steady state
xstart <- c(S = 1, P = 1, C = 1)
## Euler method
out1 <- rk(xstart, times, SPCmod, parms, hini = 0.1,
input = sigimp, method = "euler")
## classical Runge-Kutta 4th order
out2 <- rk(xstart, times, SPCmod, parms, hini = 1,
input = sigimp, method = "rk4")
## Dormand-Prince method of order 5(4)
out3 <- rk(xstart, times, SPCmod, parms, hmax = 1,
input = sigimp, method = "rk45dp7")
mf <- par("mfrow")
## deSolve plot method for comparing scenarios
plot(out1, out2, out3, which = c("S", "P", "C"),
main = c ("Substrate", "Producer", "Consumer"),
col =c("black", "red", "green"),
lty = c("solid", "dotted", "dotted"), lwd = c(1, 2, 1))
## user-specified plot function
plot (out1[,"P"], out1[,"C"], type = "l", xlab = "Producer", ylab = "Consumer")
lines(out2[,"P"], out2[,"C"], col = "red", lty = "dotted", lwd = 2)
lines(out3[,"P"], out3[,"C"], col = "green", lty = "dotted")
legend("center", legend = c("euler", "rk4", "rk45dp7"),
lty = c(1, 3, 3), lwd = c(1, 2, 1),
col = c("black", "red", "green"))
par(mfrow = mf)