initialize_hclust {ddtlcm} | R Documentation |
Estimate an initial binary tree on latent classes using hclust()
Description
Estimate an initial binary tree on latent classes using hclust()
Usage
initialize_hclust(
leaf_data,
c,
c_order = 1,
method_dist = "euclidean",
method_hclust = "ward.D",
method_add_root = "min_cor",
alpha = 0,
theta = 0,
...
)
Arguments
leaf_data |
a K by J matrix of |
c |
hyparameter of divergence function a(t) |
c_order |
equals 1 (default) or 2 to choose divergence function |
method_dist |
string specifying the distance measure to be used in dist(). This must be one of "euclidean", "maximum", "manhattan", "canberra", "binary" or "minkowski". Any unambiguous substring can be given. |
method_hclust |
string specifying the distance measure to be used in hclust(). This should be (an unambiguous abbreviation of) one of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA), "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC). |
method_add_root |
string specifying the method to add the initial branch to the tree output from hclust(). This should be one of "min_cor" (the absolute value of the minimum between-class correlation) or "sample_ddt" (randomly sample a small divergence time from the DDT process with a large c = 100) |
alpha , theta |
hyparameter of branching probability a(t) Gamma(m-alpha) / Gamma(m+1+theta) For DDT, alpha = theta = 0 |
... |
optional arguments for the poLCA function |
Value
phylo4d object of tree topology
See Also
Other initialization functions:
initialize()
,
initialize_poLCA()