dc_grad {dcurver} | R Documentation |
Gradient of the log-likelihood of univariate Davidian curves
Description
Provides the gradient for use in estimation.
Usage
dc_grad(x, phi)
Arguments
x |
A vector of observations. |
phi |
phi Davidian curve parameters. A maximum of 10 parameters is allowed. |
Details
Woods & Lin (2009) provide the gradient (Equations 17 and 18). Note that the gradient is not defined for phi = 0.0.
References
Woods, C. M., & Lin, N. (2009). Item response theory with estimation of the latent density using Davidian curves. Applied Psychological Measurement, 33(2), 102-117. doi: 10.1177/0146621608319512
Examples
# The loglikelihood of a univariate Davidian curve is given by,
dc_LL <- function(phi, dat) {
sum(log(ddc(dat, phi)))
}
# dc_grad can be used for obtaining the gradient of this loglikelihood as follows:
dc_LL_GR <- function(phi, dat) {
colSums(dc_grad(dat, phi))
}
# This can be verified by numerical approximation.
# For instance, using numDeriv package:
## Not run:
phi <- c(-5, 2.5, 10)
d <- runif(10, -5, 5)
dc_LL_GR(phi, d)
numDeriv::grad(dc_LL, x = phi, dat = d)
phi <- c(-5, 0, 10)
dc_LL_GR(phi, d)
## End(Not run)
[Package dcurver version 0.9.2 Index]