plot.ldblm {dbstats} | R Documentation |
Plots for objects of clases ldblm or ldbglm
Description
Three plots (selected by which
) are available: a plot of
fitted values vs response, a plot of residuals vs fitted and the
optimal bandwidth h
of "OCV"
, "GCV"
, "AIC"
or
"BIC"
criterion (only if one of these four methods have been chosen
in the ldblm
function). By default, only the first and the second
are provided.
Usage
## S3 method for class 'ldblm'
plot(x,which=c(1,2),id.n=3,main="",...)
Arguments
x |
|
which |
if a subset of the plots is required, specify a subset of the numbers 1:3. |
id.n |
number of points to be labelled in each plot, starting with the most extreme. |
main |
an overall title for the plot. Only if one of the three plots is selected. |
... |
other parameters to be passed through to plotting functions. |
Author(s)
Boj, Eva <evaboj@ub.edu>, Caballe, Adria <adria.caballe@upc.edu>, Delicado, Pedro <pedro.delicado@upc.edu> and Fortiana, Josep <fortiana@ub.edu>
References
Boj E, Delicado P, Fortiana J (2010). Distance-based local linear regression for functional predictors. Computational Statistics and Data Analysis 54, 429-437.
Boj E, Grane A, Fortiana J, Claramunt MM (2007). Selection of predictors in distance-based regression. Communications in Statistics B - Simulation and Computation 36, 87-98.
Cuadras CM, Arenas C, Fortiana J (1996). Some computational aspects of a distance-based model for prediction. Communications in Statistics B - Simulation and Computation 25, 593-609.
Cuadras C, Arenas C (1990). A distance-based regression model for prediction with mixed data. Communications in Statistics A - Theory and Methods 19, 2261-2279.
Cuadras CM (1989). Distance analysis in discrimination and classification using both continuous and categorical variables. In: Y. Dodge (ed.), Statistical Data Analysis and Inference. Amsterdam, The Netherlands: North-Holland Publishing Co., pp. 459-473.
Belsley, D. A., Kuh, E. and Welsch, R. E. (1980). Regression Diagnostics. New York: Wiley.
See Also
ldblm
for local distance-based linear models.
ldbglm
for local distance-based generalized linear models.
Examples
# example to use of the ldblm function
n <- 100
p <- 1
k <- 5
Z <- matrix(rnorm(n*p),nrow=n)
b1 <- matrix(runif(p)*k,nrow=p)
b2 <- matrix(runif(p)*k,nrow=p)
b3 <- matrix(runif(p)*k,nrow=p)
s <- 1
e <- rnorm(n)*s
y <- Z%*%b1 + Z^2%*%b2 +Z^3%*%b3 + e
D2 <- as.matrix(dist(Z))^2
class(D2) <- "D2"
ldblm1 <- ldblm(D2,y=y,kind.of.kernel=1,method.h="AIC",noh=5,h.knn=NULL)
plot(ldblm1)
plot(ldblm1,which=3)