backend-spark-sql {dbplyr} | R Documentation |
Backend: Databricks Spark SQL
Description
See vignette("translation-function")
and vignette("translation-verb")
for
details of overall translation technology. Key differences for this backend
are better translation of statistical aggregate functions
(e.g. var()
, median()
) and use of temporary views instead of temporary
tables when copying data.
Use simulate_spark_sql()
with lazy_frame()
to see simulated SQL without
converting to live access database.
Usage
simulate_spark_sql()
Examples
library(dplyr, warn.conflicts = FALSE)
lf <- lazy_frame(a = TRUE, b = 1, d = 2, c = "z", con = simulate_spark_sql())
lf %>% summarise(x = median(d, na.rm = TRUE))
lf %>% summarise(x = var(c, na.rm = TRUE), .by = d)
lf %>% mutate(x = first(c))
lf %>% mutate(x = first(c), .by = d)
[Package dbplyr version 2.5.0 Index]