download_daymet {daymetr} | R Documentation |
Function to download single location 'Daymet' data
Description
Function to download single location 'Daymet' data
Usage
download_daymet(
site = "Daymet",
lat = 36.0133,
lon = -84.2625,
start = 2000,
end = as.numeric(format(Sys.time(), "%Y")) - 2,
path = tempdir(),
internal = TRUE,
silent = FALSE,
force = FALSE,
simplify = FALSE
)
Arguments
site |
the site name. |
lat |
latitude (decimal degrees) |
lon |
longitude (decimal degrees) |
start |
start of the range of years over which to download data |
end |
end of the range of years over which to download data |
path |
set path where to save the data if internal = FALSE (default = NULL) |
internal |
|
silent |
|
force |
|
simplify |
output data as a tibble, logical |
Value
Daymet data for a point location, returned to the R workspace or written to disk as a csv file.
Examples
## Not run:
# The following commands download and process Daymet data
# for 10 years of the >30 year of data available since 1980.
daymet_data <- download_daymet(
"testsite_name",
lat = 36.0133,
lon = -84.2625,
start = 2000,
end = 2010,
internal = TRUE
)
# We can now quickly calculate and plot
# daily mean temperature. Also, take note of
# the weird format of the header. This format
# is not altered as to keep compatibility
# with other ways of acquiring Daymet data
# through the ORNL DAAC website.
# The below command lists headers of
# the downloaded nested list.
# This data includes information on the site
# location etc. The true climate data is stored
# in the "data" part of the nested list.
# In this case it can be accessed through
# daymet_data$data. Other attributes include
# for example the tile location (daymet_data$tile),
# the altitude (daymet_data$altitude), etc.
str(daymet_data)
# load the tidyverse (install if necessary)
if(!require(tidyverse)){install.package(tidyverse)}
library(tidyverse)
# Calculate the mean temperature from min
# max temperatures and convert the year and doy
# to a proper date format.
daymet_data$data <- daymet_data$data |>
mutate(
tmean = (tmax..deg.c. + tmin..deg.c.)/2,
date = as.Date(paste(year, yday, sep = "-"), "%Y-%j")
)
# show a simple graph of the mean temperature
plot(daymet_data$data$date,
daymet_data$data$tmean,
xlab = "Date",
ylab = "mean temperature")
# For other practical examples consult the included
# vignette.
## End(Not run)
[Package daymetr version 1.7.1 Index]