| print.fpcat {dad} | R Documentation |
Printing results of a functional PCA of probability densities among time
Description
Applies to an object of class "fpcat". Prints the numeric results returned by the fpcat function.
Usage
## S3 method for class 'fpcat'
print(x, mean.print = FALSE, var.print = FALSE,
cor.print = FALSE, skewness.print = FALSE, kurtosis.print = FALSE,
digits = 2, ...)
Arguments
x |
object of class |
mean.print |
logical. If |
var.print |
logical. If |
cor.print |
logical. If |
skewness.print |
logical. If |
kurtosis.print |
logical. If |
digits |
numeric. Number of significant digits for the display of numeric results. |
... |
optional arguments to |
Details
By default, are printed the vector of observation times (numeric, ordered factor or object of class "Date"), the inertia explained by the nb.values (see fpcat) first principal components, the contributions, the qualities of representation of the densities along the nb.factors (see fpcat) first principal components, and the principal scores.
Author(s)
Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard
References
Boumaza, R., Yousfi, S., Demotes-Mainard, S. (2015). Interpreting the principal component analysis of multivariate density functions. Communications in Statistics - Theory and Methods, 44 (16), 3321-3339.
See Also
fpcat; plot.fpcat; print.
Examples
times <- as.Date(c("2017-03-01", "2017-04-01", "2017-05-01", "2017-06-01"))
x1 <- data.frame(z1=rnorm(6,1,5), z2=rnorm(6,3,3))
x2 <- data.frame(z1=rnorm(6,4,6), z2=rnorm(6,5,2))
x3 <- data.frame(z1=rnorm(6,7,2), z2=rnorm(6,8,4))
x4 <- data.frame(z1=rnorm(6,9,3), z2=rnorm(6,10,2))
ft <- foldert(x1, x2, x3, x4, times = times, rows.select="intersect")
print(ft)
result <- fpcat(ft)
print(result)
print(result, mean.print = TRUE, var.print = TRUE)