l2d {dad}R Documentation

L^2 inner product of probability densities

Description

L^2 inner product of two multivariate (p > 1) or univariate (p = 1) probability densities, estimated from samples.

Usage

l2d(x1, x2, method = "gaussiand", check = FALSE, varw1 = NULL, varw2 = NULL)

Arguments

x1

a matrix or data frame of n_1 rows (observations) and p columns (variables) (can also be a tibble) or a vector of length n_1.

x2

matrix or data frame (or tibble) of n_2 rows and p columns or vector of length n_2.

method

string. It can be:

  • "gaussiand" if the densities are considered to be Gaussian.

  • "kern" if they are estimated using the Gaussian kernel method.

check

logical. When TRUE (the default is FALSE) the function checks if the covariance matrices (if method = "gaussiand") or smoothing bandwidth matrices (if method = "kern") are not degenerate, before computing the inner product.

Notice that if p = 1, it checks if the variances or smoothing parameters are not zero.

varw1, varw2

p x p symmetric matrices: the smoothing bandwidths for the estimation of the probability densities. If they are omitted, the smoothing bandwidths are computed using the normal reference rule matrix bandwidth (see details).

Details

Value

The L^2 inner product of the two probability densities.

Be careful! If check = FALSE and one smoothing bandwidth matrix is degenerate, the result returned can not be considered.

Author(s)

Rachid Boumaza, Pierre Santagostini, Smail Yousfi, Gilles Hunault, Sabine Demotes-Mainard

References

Boumaza, R., Yousfi, S., Demotes-Mainard, S. (2015). Interpreting the principal component analysis of multivariate density functions. Communications in Statistics - Theory and Methods, 44 (16), 3321-3339.

Wand, M., Jones, M. (1995). Kernel smoothing. Chapman and Hall/CRC, London.

Yousfi, S., Boumaza R., Aissani, D., Adjabi, S. (2014). Optimal bandwith matrices in functional principal component analysis of density functions. Journal of Statistical Computational and Simulation, 85 (11), 2315-2330.

See Also

l2dpar for Gaussian densities whose parameters are given.

Examples

require(MASS)
m1 <- c(0,0)
v1 <- matrix(c(1,0,0,1),ncol = 2) 
m2 <- c(0,1)
v2 <- matrix(c(4,1,1,9),ncol = 2)
x1 <- mvrnorm(n = 3,mu = m1,Sigma = v1)
x2 <- mvrnorm(n = 5, mu = m2, Sigma = v2)
l2d(x1, x2, method = "gaussiand")
l2d(x1, x2, method = "kern")
l2d(x1, x2, method = "kern", varw1 = v1, varw2 = v2)

[Package dad version 4.1.2 Index]