| fpiter {daarem} | R Documentation | 
Fixed-Point Iteration Scheme
Description
A function to implement the fixed-point iteration algorithm. This includes monotone, contraction mappings including EM and MM algorithms
Usage
  fpiter(par, fixptfn, objfn=NULL, control=list( ), ...)
Arguments
| par | A vector of parameters denoting the initial guess for the fixed-point iteration. | 
| fixptfn | A vector function,  | 
| objfn | This is a scalar function, $L$, that denotes a ”merit”
function which attains its local minimum at the fixed-point of $F$.
This function should accept a parameter vector as input and should
return a scalar value. In the EM algorithm, the merit function  | 
| control | A list of control parameters to pass on to the algorithm. Full names of control list elements must be specified, otherwise, user-specifications are ignored. See *Details* below. | 
| ... | Arguments passed to  | 
Details
control is list of control parameters for the algorithm.
control = list(tol = 1.e-07, maxiter = 1500, trace = FALSE)
tol  A small, positive scalar that determines when iterations
should be terminated.  Iteration is terminated when
||x_k - F(x_k)|| \leq tol.
Default is 1.e-07.
maxiter  An integer denoting the maximum limit on the number of
evaluations of  fixptfn, F.  Default is 1500.
trace  A logical variable denoting whether some of the intermediate
results of iterations should be displayed to the user.
Default is FALSE.
Value
A list with the following components:
| par | Parameter, | 
| value.objfn | The value of the objective function  | 
| fpevals | Number of times the fixed-point function  | 
| objfevals | Number of times the objective function  | 
| convergence | An integer code indicating type of convergence.
 | 
See Also
Examples
### Generate outcomes from a probit regression model
n <- 1000
npars <- 5
true.beta <- .5*rt(npars, df=2) + 1
XX <- matrix(rnorm(n*npars), nrow=n, ncol=npars)
yy <- ProbitSimulate(true.beta, XX)
max.iter <- 1000
beta.init <- rep(0.0, npars)
### EM algorithm for estimating parameters from probit regression
em.probit <- fpiter(par=beta.init, fixptfn = ProbitUpdate, X=XX, y=yy,
                    control=list(maxiter=max.iter))