| parframe {dMod} | R Documentation | 
Generate a parameter frame
Description
A parameter frame is a data.frame where the rows correspond to different parameter specifications. The columns are divided into three parts. (1) the meta-information columns (e.g. index, value, constraint, etc.), (2) the attributes of an objective function (e.g. data contribution and prior contribution) and (3) the parameters.
Usage
parframe(
  x = NULL,
  parameters = colnames(x),
  metanames = NULL,
  obj.attributes = NULL
)
is.parframe(x)
## S3 method for class 'parframe'
x[i = NULL, j = NULL, drop = FALSE]
## S3 method for class 'parframe'
subset(x, ...)
Arguments
x | 
 data.frame.  | 
parameters | 
 character vector, the names of the parameter columns.  | 
metanames | 
 character vector, the names of the meta-information columns.  | 
obj.attributes | 
 character vector, the names of the objective function attributes.  | 
i | 
 row index in any format  | 
j | 
 column index in any format  | 
drop | 
 logical. If TRUE the result is coerced to the lowest possible dimension  | 
... | 
 additional arguments  | 
Details
Parameter frames can be subsetted either by [ , ] or by subset. If
[ , index] is used, the names of the removed columns will also be removed from
the corresponding attributes, i.e. metanames, obj.attributes and parameters.
Value
An object of class parframe, i.e. a data.frame with attributes for the
different names. Inherits from data.frame.
See Also
Examples
## Generate a prediction function
regfn <- c(y = "sin(a*time)")
g <- Y(regfn, parameters = "a")
x <- Xt(condition = "C1")
## Generate data
data <- datalist(
  C1 = data.frame(
    name = "y",
    time = 1:5,
    value = sin(1:5) + rnorm(5, 0, .1),
    sigma = .1
  )
)
## Initialize parameters and time 
pars <- c(a = 1)
times <- seq(0, 5, .1)
plot((g*x)(times, pars), data)
## Do many fits from random positions and store them into parlist
out <- as.parlist(lapply(1:50, function(i) {
  trust(normL2(data, g*x), pars + rnorm(length(pars), 0, 1), rinit = 1, rmax = 10)
}))
summary(out)
## Reduce parlist to parframe
parframe <- as.parframe(out)
plotValues(parframe)
## Reduce parframe to best fit
bestfit <- as.parvec(parframe)
plot((g*x)(times, bestfit), data)