mADCV {dCovTS} | R Documentation |
Auto-Distance Covariance Matrix
Description
Computes the sample auto-distance covariance matrices of a multivariate time series.
Usage
mADCV(x, lags, unbiased = FALSE, output = TRUE)
Arguments
x |
Multivariate time series. |
lags |
The lag order at which to calculate the |
unbiased |
A logical value. If unbiased = TRUE, the individual elements of auto-distance covariance matrix correspond to the unbiased estimators of squared auto-distance covariance functions. Default value is FALSE. |
output |
A logical value. If output=FALSE, no output is given. Default value is TRUE. |
Details
Suppose that \textbf{X}_t=(X_{t;1}, \dots, X_{t;d})'
is a multivariate
time series of dimension d
.
Then, mADCV
computes the d \times d
sample auto-distance
covariance matrix, \hat{V}(\cdot)
,
of \textbf{X}_t
given by
\hat{V}(j) = [\hat{V}_{rm}(j)]_{r,m=1}^d , \quad j=0, \pm 1, \pm 2, \dots,
where \hat{V}_{rm}(j)
denotes the biased estimator of the pairwise
auto-distance covariance function between
X_{t;r}
and X_{t+j;m}
. The definition of \hat{V}_{rm}(j)
is
given analogously as in the univariate
case (see ADCV
). Formal definitions and theoretical properties of
auto-distance covariance matrix can be
found in Fokianos and Pitsillou (2018).
If unbiased = TRUE, mADCV
computes the matrix,
\tilde{V}^{(2)}(j)
, whose elements correspond to the unbiased estimators
of squared pairwise auto-distance covariance functions, namely
\tilde{V}^{(2)}(j) = [\tilde{V}^2_{rm}(j)]_{r,m=1}^d , \quad j=0, \pm 1, \pm 2, \dots.
The definition of \tilde{V}_{rm}^2(\cdot)
is defined analogously as
explained in the univariate case
(see ADCV
).
Value
If lags
is a single number then the function will return a matrix.
If lags
is a vector of many values the function will return an array.
For either case, the matrix (matrices) will contain either the biased estimators
of the pairwise auto-distance covariance functions or the unbiased estimators
of squared pairwise auto-distance covariance functions at lag, j
,
determined by the argument lags
.
Author(s)
Maria Pitsillou, Michail Tsagris and Konstantinos Fokianos.
References
Edelmann, D, K. Fokianos. and M. Pitsillou. (2019). An Updated Literature Review of Distance Correlation and Its Applications to Time Series. International Statistical Review, 87, 237-262.
Fokianos K. and Pitsillou M. (2018). Testing independence for multivariate time series via the auto-distance correlation matrix. Biometrika, 105, 337-352.
Huo, X. and G. J. Szekely. (2016). Fast Computing for Distance Covariance. Technometrics, 58, 435-447.
Pitsillou M. and Fokianos K. (2016). dCovTS: Distance Covariance/Correlation for Time Series. R Journal, 8, 324-340.
See Also
Examples
x <- matrix( rnorm(200), ncol = 2 )
mADCV(x, lags = 1)
mADCV(x, lags = 15)
y <- as.ts(swiss)
mADCV(y, 15)
mADCV(y, 15, unbiased = TRUE)