mADCFplot {dCovTS} | R Documentation |
Distance cross-correlation plot
Description
The function computes and plots the estimator of the auto-distance correlation
matrix mADCF
.
Usage
mADCFplot(x, MaxLag = 15, alpha = 0.05, b = 499,
bootMethod = c("Wild Bootstrap", "Independent Bootstrap"),
ylim = NULL)
Arguments
x |
A multivariate time series. |
MaxLag |
The maximum lag order at which to plot |
alpha |
The significance level used to construct the |
b |
The number of bootstrap replications for constructing the |
bootMethod |
A character string indicating the method to use for obtaining the
|
ylim |
A numeric vector of length 2 indicating the |
Details
The (1-\alpha)
% confidence intervals shown in the plot
(dotted blue horizontal line) are computed simultaneously based
on the independent wild bootstrap approach (Dehling and Mikosch,
1994; Shao, 2010; Leucht and Neumann, 2013), since the
elements of mADCV
(and thus mADCF
) can be
expressed as degenerate V-statistics of order 2.
More details can be found in Fokianos and Pitsillou (2017).
In addition, mADCFplot
provides the option of independent
bootstrap to compute the simultaneous
(1-\alpha)
% critical values.
Value
A plot of the estimated mADCF
matrices. The function also
returns a list including
matrices |
Sample distance correlation matrices starting from lag 0. |
bootMethod |
The method followed for computing the |
critical.value |
The critical value shown in the plot. |
Note
The function plots only the biased estimator of ADCF matrix.
Author(s)
Maria Pitsillou and Konstantinos Fokianos.
References
Edelmann, D, K. Fokianos. and M. Pitsillou. (2019). An Updated Literature Review of Distance Correlation and Its Applications to Time Series. International Statistical Review, 87, 237-262.
Dehling, H. and T. Mikosch (1994). Random quadratic forms and the bootstrap for U-statistics. Journal of Multivariate Analysis, 51, 392-413.
Fokianos K. and Pitsillou M. (2018). Testing independence for multivariate time series via the auto-distance correlation matrix. Biometrika, 105, 337-352.
Fokianos K. and M. Pitsillou (2017). Consistent testing for pairwise dependence in time series. Technometrics, 159, 262-3270.
Huo, X. and G. J. Szekely. (2016). Fast Computing for Distance Covariance. Technometrics, 58, 435-447.
Leucht, A. and M. H. Neumann (2013). Dependent wild bootstrap for degenerate U- and V- statistics. Journal of Multivariate Analysis, 117, 257-280.
Pitsillou M. and Fokianos K. (2016). dCovTS: Distance Covariance/Correlation for Time Series. R Journal, 8, 324-340.
Shao, X. (2010). The dependent wild bootstrap. Journal of the American Statistical Association, 105, 218-235.
See Also
Examples
### x <- matrix( rnorm(200), ncol = 2 )
### mADCFplot(x, 12, ylim = c(0, 0.5) )
### mADCFplot(x, 12, b = 100)