mADCF {dCovTS} | R Documentation |
Auto-Distance Correlation Matrix
Description
Computes the auto-distance correlation matrix of a multivariate time series.
Usage
mADCF(x, lags, unbiased = FALSE, output = TRUE)
Arguments
x |
Multivariate time series. |
lags |
The lag order at which to calculate the |
unbiased |
A logical value. If unbiased = TRUE, the individual elements of auto-distance correlation matrix correspond to the bias-corrected estimators of squared auto-distance correlation functions. Default value is FALSE. |
output |
A logical value. If output=FALSE, no output is given. Default value is TRUE. |
Details
If \textbf{X}_t=(X_{t;1}, \dots, X_{t;d})'
is a multivariate time series
of dimension d
, then mADCF
computes the sample auto-distance
correlation matrix, \hat{R}(\cdot)
, of \textbf{X}_t
. It is defined by
\hat{R}(j) = [\hat{R}_{rm}(j)]_{r,m=1}^d, \quad j=0, \pm 1, \pm 2, \dots,
where \hat{R}_{rm}(j)
is the biased estimator of the so-called pairwise
auto-distance correlation function between
X_{t;r}
and X_{t+j;m}
given by the positive square root of
\hat{R}_{rm}^2(j) = \frac{\hat{V}_{rm}^2(j)}{\hat{V}_{rr}(0)\hat{V}_{mm}(0)}
for \hat{V}_{rr}(0)\hat{V}_{mm}(0) \neq 0
and zero otherwise.
\hat{V}_{rm}(j)
is the (r,m)
element of the corresponding
mADCV
matrix at lag j
.
Formal definition and more details can be found in Fokianos and Pitsillou (2017).
If unbiased = TRUE, mADCF
returns a matrix that contains the
bias-corrected estimators of squared pairwise
auto-distance correlation functions.
Value
If lags
is a single number then the function will return a matrix.
If lags
is a vector of many values the function will return an array.
For either case, the matrix (matrices) will contain either the biased
estimators of the pairwise auto-distance correlation functions or the
bias-corrected estimators of squared pairwise auto-distance correlation
functions at lag, j
, determined by the argument lags
.
Author(s)
Maria Pitsillou, Michail Tsagris and Konstantinos Fokianos.
References
Edelmann, D, K. Fokianos. and M. Pitsillou. (2019). An Updated Literature Review of Distance Correlation and Its Applications to Time Series. International Statistical Review, 87, 237-262.
Fokianos K. and Pitsillou M. (2018). Testing independence for multivariate time series via the auto-distance correlation matrix. Biometrika, 105, 337-352.
Huo, X. and G. J. Szekely. (2016). Fast Computing for Distance Covariance. Technometrics, 58, 435-447.
Pitsillou M. and Fokianos K. (2016). dCovTS: Distance Covariance/Correlation for Time Series. R Journal, 8, 324-340.
See Also
Examples
x <- matrix( rnorm(200), ncol = 2 )
mADCF(x, 2)
mADCF(x, -2)
mADCF(x, lags = 4, unbiased = TRUE)