var_exp {dCUR} | R Documentation |
var_exp
Description
var_exp
is used to compute the proportion of the fraction of variance explained by a principal component analysis.
Usage
var_exp(data, standardize = FALSE, ...)
Arguments
data |
a data frame that contains the variables to be used in CUR decomposition. |
standardize |
logical. If |
... |
Additional arguments to be passed to |
Details
The objective of CUR decomposition is to find the most relevant variables and observations within a data matrix and to reduce the dimensionality. It is well known that as more columns (variables) and rows are selected, the relative error will be lower; however, this is not true for k (number of components to calculate leverages). Given the above, this function seeks to find the best-balanced scenario of k, the number of relevant columns, and rows that have an error very close to the minimum, and that, in turn, uses a smaller amount of information.
Value
var_exp |
a data frame with the proportion of explained variance for each principal component. |
Author(s)
Cesar Gamboa-Sanabria, Stefany Matarrita-Munoz, Katherine Barquero-Mejias, Greibin Villegas-Barahona, Mercedes Sanchez-Barba and Maria Purificacion Galindo-Villardon.
References
Mahoney MW, Drineas P (2009). “CUR matrix decompositions for improved data analysis.” Proceedings of the National Academy of Sciences, 106(3), 697–702. ISSN 0027-8424, doi:10.1073/pnas.0803205106. Villegas G, others (2018). “Modelo estadistico pedagogico para la toma de decisiones administrativas y academicas con impacto en el mejoramiento continuo del rendimiento de los estudiantes universitarios, basado en los metodos de seleccion CUR.” doi:10.14201/gredos.139405. Villegas G, Martin-Barreiro C, Gonzalez-Garcia N, Hernandez-Gonzalez S, Sanchez-Barba M, Galindo-Villardon M (2019). “Dynamic CUR, an alternative to variable selection in CUR decomposition.” Revistas Investigacion Operacional, 40(3), 391–399.
See Also
Examples
var_exp(AASP, standardize = TRUE, hoessem:notabachillerato)