mixture_plots {dCUR} | R Documentation |
mixture_plots
Description
This function returns different plots associated with the fitting of leverages scores through Mixture Gaussian Models.
Usage
mixture_plots(data)
Arguments
data |
An object resulting from a call to CUR when "mixture" is specified as cur_method. |
Details
Gaussian Mixture Models Plots
Value
mixture_plots
returns a list with the following plots:
BIC |
BIC Plot of the Bayesian Information Criterion (BIC) for each number of mixture components. E and V stands for equal variance in mixture components or variable variance, respectively. |
density |
leverages score's density |
Cumulative |
cumulative density of leverages scores. |
QQPlot |
Plot the sample quantiles and controlled quantiles of the inverse of the cumulative distribution function. |
Author(s)
Cesar Gamboa-Sanabria, Stefany Matarrita-Munoz, Katherine Barquero-Mejias, Greibin Villegas-Barahona, Mercedes Sanchez-Barba and Maria Purificacion Galindo-Villardon.
References
Mahoney MW, Drineas P (2009). “CUR matrix decompositions for improved data analysis.” Proceedings of the National Academy of Sciences, 106(3), 697–702. ISSN 0027-8424, doi:10.1073/pnas.0803205106. Villegas G, others (2018). “Modelo estadistico pedagogico para la toma de decisiones administrativas y academicas con impacto en el mejoramiento continuo del rendimiento de los estudiantes universitarios, basado en los metodos de seleccion CUR.” doi:10.14201/gredos.139405. Villegas G, Martin-Barreiro C, Gonzalez-Garcia N, Hernandez-Gonzalez S, Sanchez-Barba M, Galindo-Villardon M (2019). “Dynamic CUR, an alternative to variable selection in CUR decomposition.” Revistas Investigacion Operacional, 40(3), 391–399.
See Also
Examples
results <- CUR(data=AASP, variables=hoessem:notabachillerato,
k=20, rows = .9999999, columns = .10, standardize = TRUE,
cur_method = "mixture")
mixture_plots(results)