tmklm {dBlockmodeling} | R Documentation |
Two-Mode KL-Means Heuristic
Description
This function runs two-mode K-means for an RO x CO
network matrix.
Usage
tmklm(A, RC, CC, TLIMIT)
Arguments
A |
An |
RC |
The number of clusters for row objects ( |
CC |
The number of clusters for column objects ( |
TLIMIT |
A desired time limit. |
Value
The function returns the following:
-
vaf
- the variance-accounted-for; -
RP
- anRO
-dimensional vector of row cluser assignements; -
RC
- anRC
-dimensional vector of column cluser assignements; -
restarts
- the number of restarts within the time limit.
Author(s)
Michael Brusco
References
Brusco, M. J., Doreian, P., & Steinley, D. (2019). Deterministic blockmodeling of signed and two-mode networks: a tutorial with psychological examples. British Journal of Mathematical and Statistical Psychology.
Baier, D., Gaul, W., & Schader, M. (1997). Two-mode overlapping clustering with applications in simultaneous benefit segmentation and market structuring. In R. Klar & O. Opitz (Eds), Classification and knowledge organization (pp. 557-566), Heidelberg: Springer.
Brusco, M., & Doreian, P. (2015). A real-coded genetic algorithm for two-mode KL-means partitioning with application to homogeneity blockmodeling. Social Networks, 41, 26-35. http://dx.doi.org/10.1016/j.socnet.2014.11.007
Examples
# Load the Turning Point Project network (Brusco & Doreian, 2015) data.
data("nyt")
# Run two-mode K-means procedure.
res <- tmklm(nyt,RC = 9,CC = 5,TLIMIT = 1)
# See the results.
res