gaussian_metrics {cvms} | R Documentation |
Select metrics for Gaussian evaluation
Description
Enable/disable metrics for Gaussian evaluation. Can be supplied to the
`metrics`
argument in many of the cvms
functions.
Note: Some functions may have slightly different defaults than the ones supplied here.
Usage
gaussian_metrics(
all = NULL,
rmse = NULL,
mae = NULL,
nrmse_rng = NULL,
nrmse_iqr = NULL,
nrmse_std = NULL,
nrmse_avg = NULL,
rae = NULL,
rse = NULL,
rrse = NULL,
rmsle = NULL,
male = NULL,
mape = NULL,
mse = NULL,
tae = NULL,
tse = NULL,
r2m = NULL,
r2c = NULL,
aic = NULL,
aicc = NULL,
bic = NULL
)
Arguments
all |
Enable/disable all arguments at once. (Logical) Specifying other metrics will overwrite this, why you can
use ( |
rmse |
Root Mean Square Error. |
mae |
Mean Absolute Error. |
nrmse_rng |
Normalized Root Mean Square Error (by target range). |
nrmse_iqr |
Normalized Root Mean Square Error (by target interquartile range). |
nrmse_std |
Normalized Root Mean Square Error (by target standard deviation). |
nrmse_avg |
Normalized Root Mean Square Error (by target mean). |
rae |
Relative Absolute Error. |
rse |
Relative Squared Error. |
rrse |
Root Relative Squared Error. |
rmsle |
Root Mean Square Log Error. |
male |
Mean Absolute Log Error. |
mape |
Mean Absolute Percentage Error. |
mse |
Mean Square Error. |
tae |
Total Absolute Error |
tse |
Total Squared Error. |
r2m |
Marginal R-squared. |
r2c |
Conditional R-squared. |
aic |
Akaike Information Criterion. |
aicc |
Corrected Akaike Information Criterion. |
bic |
Bayesian Information Criterion. |
Author(s)
Ludvig Renbo Olsen, r-pkgs@ludvigolsen.dk
See Also
Other evaluation functions:
binomial_metrics()
,
confusion_matrix()
,
evaluate()
,
evaluate_residuals()
,
multinomial_metrics()
Examples
# Attach packages
library(cvms)
# Enable only RMSE
gaussian_metrics(all = FALSE, rmse = TRUE)
# Enable all but RMSE
gaussian_metrics(all = TRUE, rmse = FALSE)
# Disable RMSE
gaussian_metrics(rmse = FALSE)