| evaluate_residuals {cvms} | R Documentation |
Evaluate residuals from a regression task
Description
Calculates a large set of error metrics from regression residuals.
Note: In most cases you should use evaluate() instead.
It works in magrittr pipes (e.g. %>%) and with
dplyr::group_by().
evaluate_residuals() is more lightweight and may be preferred in
programming when you don't need the extra stuff
in evaluate().
Usage
evaluate_residuals(data, target_col, prediction_col, metrics = list())
Arguments
data |
|
target_col |
Name of the column with the true values in |
prediction_col |
Name of column with the predicted values in |
metrics |
E.g. You can enable/disable all metrics at once by including
The Also accepts the string |
Details
The metric formulas are listed in 'The Available Metrics' vignette.
Value
tibble data.frame with the calculated metrics.
The following metrics are available (see `metrics`):
| Metric | Name | Default |
| Mean Absolute Error | "MAE" | Enabled |
| Root Mean Square Error | "RMSE" | Enabled |
| Normalized RMSE (by target range) | "NRMSE(RNG)" | Disabled |
| Normalized RMSE (by target IQR) | "NRMSE(IQR)" | Enabled |
| Normalized RMSE (by target STD) | "NRMSE(STD)" | Disabled |
| Normalized RMSE (by target mean) | "NRMSE(AVG)" | Disabled |
| Relative Squared Error | "RSE" | Disabled |
| Root Relative Squared Error | "RRSE" | Enabled |
| Relative Absolute Error | "RAE" | Enabled |
| Root Mean Squared Log Error | "RMSLE" | Enabled |
| Mean Absolute Log Error | "MALE" | Disabled |
| Mean Absolute Percentage Error | "MAPE" | Disabled |
| Mean Squared Error | "MSE" | Disabled |
| Total Absolute Error | "TAE" | Disabled |
| Total Squared Error | "TSE" | Disabled |
The Name column refers to the name used in the package.
This is the name in the output and when enabling/disabling in `metrics`.
Author(s)
Ludvig Renbo Olsen, r-pkgs@ludvigolsen.dk
See Also
Other evaluation functions:
binomial_metrics(),
confusion_matrix(),
evaluate(),
gaussian_metrics(),
multinomial_metrics()
Examples
# Attach packages
library(cvms)
data <- data.frame(
"targets" = rnorm(100, 14.7, 3.6),
"predictions" = rnorm(100, 13.2, 4.6)
)
evaluate_residuals(
data = data,
target_col = "targets",
prediction_col = "predictions"
)