linearShrinkLWEst {cvCovEst} | R Documentation |
Ledoit-Wolf Linear Shrinkage Estimator
Description
linearShrinkLWEst()
computes an asymptotically optimal
convex combination of the sample covariance matrix and the identity matrix.
This convex combination effectively shrinks the eigenvalues of the sample
covariance matrix towards the identity. This estimator is more accurate
than the sample covariance matrix in high-dimensional settings under fairly
loose assumptions. For more information, consider reviewing the manuscript
by Ledoit and Wolf (2004).
Usage
linearShrinkLWEst(dat)
Arguments
dat |
A numeric |
Value
A matrix
corresponding to the Ledoit-Wolf linear shrinkage
estimate of the covariance matrix.
References
Ledoit O, Wolf M (2004). “A well-conditioned estimator for large-dimensional covariance matrices.” Journal of Multivariate Analysis, 88(2), 365 - 411. ISSN 0047-259X, doi:10.1016/S0047-259X(03)00096-4, https://www.sciencedirect.com/science/article/pii/S0047259X03000964.
Examples
linearShrinkLWEst(dat = mtcars)