| cvFrobeniusLoss {cvCovEst} | R Documentation | 
Cross-Validation Function for Aggregated Frobenius Loss
Description
cvFrobeniusLoss() evaluates the aggregated Frobenius loss
over a fold object (from 'origami'
(Coyle and Hejazi 2018)).
Usage
cvFrobeniusLoss(fold, dat, estimator_funs, estimator_params = NULL)
Arguments
| fold | A  | 
| dat | A  | 
| estimator_funs | An  | 
| estimator_params | A named  | 
Value
A tibble providing information on estimators,
their hyperparameters (if any), and their scaled Frobenius loss evaluated
on a given fold.
References
Coyle J, Hejazi N (2018). “origami: A Generalized Framework for Cross-Validation in R.” Journal of Open Source Software, 3(21), 512. doi:10.21105/joss.00512.
Examples
library(MASS)
library(origami)
library(rlang)
# generate 10x10 covariance matrix with unit variances and off-diagonal
# elements equal to 0.5
Sigma <- matrix(0.5, nrow = 10, ncol = 10) + diag(0.5, nrow = 10)
# sample 50 observations from multivariate normal with mean = 0, var = Sigma
dat <- mvrnorm(n = 50, mu = rep(0, 10), Sigma = Sigma)
# generate a single fold using MC-cv
resub <- make_folds(dat,
  fold_fun = folds_vfold,
  V = 2
)[[1]]
cvFrobeniusLoss(
  fold = resub,
  dat = dat,
  estimator_funs = rlang::quo(c(
    linearShrinkEst, thresholdingEst, sampleCovEst
  )),
  estimator_params = list(
    linearShrinkEst = list(alpha = c(0, 1)),
    thresholdingEst = list(gamma = c(0, 1))
  )
)