cohens_kappa {cutpointr} | R Documentation |
Calculate Cohen's Kappa
Description
Calculate the Kappa metric from
true positives, false positives, true negatives and false negatives.
The inputs must be vectors of equal length.
mrg_a = ((tp + fn) * (tp + fp)) / (tp + fn + fp + tn)
mrg_b = ((fp + tn) * (fn + tn)) / (tp + fn + fp + tn)
expec_agree = (mrg_a + mrg_b) / (tp + fn + fp + tn)
obs_agree = (tp + tn) / (tp + fn + fp + tn)
cohens_kappa = (obs_agree - expec_agree) / (1 - expec_agree)
Usage
cohens_kappa(tp, fp, tn, fn, ...)
Arguments
tp |
(numeric) number of true positives. |
fp |
(numeric) number of false positives. |
tn |
(numeric) number of true negatives. |
fn |
(numeric) number of false negatives. |
... |
for capturing additional arguments passed by method. |
Value
A numeric matrix with the column name "cohens_kappa".
See Also
Other metric functions:
F1_score()
,
Jaccard()
,
abs_d_ppv_npv()
,
abs_d_sens_spec()
,
accuracy()
,
cutpoint()
,
false_omission_rate()
,
metric_constrain()
,
misclassification_cost()
,
npv()
,
odds_ratio()
,
p_chisquared()
,
plr()
,
ppv()
,
precision()
,
prod_ppv_npv()
,
prod_sens_spec()
,
recall()
,
risk_ratio()
,
roc01()
,
sensitivity()
,
specificity()
,
sum_ppv_npv()
,
sum_sens_spec()
,
total_utility()
,
tpr()
,
tp()
,
youden()
Examples
cohens_kappa(10, 5, 20, 10)
cohens_kappa(c(10, 8), c(5, 7), c(20, 12), c(10, 18))