oliva {cusp} | R Documentation |
Synthetic cusp data set
Description
Synthetic ‘multivariate’ data from the cusp catastrophe as generated from the equations specified by Oliva et al. (1987).
Usage
data(oliva)
Format
A data frame with 50 observations on the following 12 variables.
x1
splitting factor predictor
x2
splitting factor predictor
x3
splitting factor predictor
y1
the bifurcation factor predictor
y2
the bifurcation factor predictor
y3
the bifurcation factor predictor
y4
the bifurcation factor predictor
z1
the state factor predictor
z2
the state factor predictor
alpha
the true
alpha
'sbeta
the true
beta
'sy
the true state variable values
Details
The data in Oliva et al. (1987) are obtained from the equations
\alpha_i = X_{i1} - .969\,X_{i2} - .201\,X_{i3},
\beta_i = .44\,Y_{i1} + 0.08\,Y_{i2} + .67\,Y_{i3} + .19\,Y_{i4},
y_i = -0.52\,Z_{i1} - 1.60\,Z_{i2}.
Here the X_{ij}
's are uniformly distributed on (-2,2), and the Y_{ij}
's and Z_{i1}
are
uniform on (-3,3).
The states y_i
were then generated from the cusp density, using rcusp
, with their respective
\alpha_i
's and \beta_i
's as normal and splitting factors, and then Z_2
was computed as
Z_{i2} = (y_i + 0.52 Z_{i1} )/( 1.60).
Source
Oliva T, Desarbo W, Day D, Jedidi K (1987). GEMCAT: A general multivariate methodology for estimating catastrophe models. Behavioral Science, 32(2), 121137.
References
Oliva T, Desarbo W, Day D, Jedidi K (1987). GEMCAT: A general multivariate methodology for estimating catastrophe models. Behavioral Science, 32(2), 121137.
Examples
data(oliva)
set.seed(121)
fit <- cusp(y ~ z1 + z2 - 1,
alpha ~ x1 + x2 + x3 - 1, ~ y1 + y2 + y3 + y4 - 1,
data = oliva, start = rnorm(9))
summary(fit)
## Not run:
cusp3d(fit, B=5.25, n.surf=50, theta=150)
# B modifies the range of beta (is set here to 5.25 to make
# sure all points lie on the surface)
## End(Not run)