ComputeMLE {curstatCI} | R Documentation |
Maximum Likelihood Estimator
Description
The function ComputeMLE computes the Maximum Likelihood Estimator of the distribution function under current status data.
Usage
ComputeMLE(data)
Arguments
data |
Dataframe with three variables:
|
Details
In the current status model, the variable of interest X
with distribution function F
is not observed directly.
A censoring variable T
is observed instead together with the indicator \Delta = (X \le T)
.
ComputeMLE computes the MLE of F
based on a sample of size n <- sum(data$freq2)
.
Value
Dataframe with two variables :
- x
jump locations of the MLE
- mle
MLE evaluated at the jump locations
References
Groeneboom, P. and Hendrickx, K. (2017). The nonparametric bootstrap for the current status model. Electronic Journal of Statistics 11(2):3446-3848.
See Also
Examples
library(Rcpp)
library(curstatCI)
# sample size
n <- 1000
# Uniform data U(0,2)
set.seed(2)
y <- runif(n,0,2)
t <- runif(n,0,2)
delta <- as.numeric(y <= t)
A<-cbind(t[order(t)], delta[order(t)], rep(1,n))
mle <-ComputeMLE(A)
plot(mle$x, mle$mle,type ='s', ylim=c(0,1), main= "",ylab="",xlab="",las=1)